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PREFACE

The Hughes Aircraft Company Pioneer Venus final report is based on

study task reports prepared during performance of the "System Design Study

of the Pioneer Spacecraft. " These task reports were forwarded to Ames

Research Center as they were completed during the nine months study phase.

The significant results from these task reports, along with study results

developed after task report publication dates, are reviewed in this final

report to provide complete study documentation. Wherever appropriate, the

task reports are cited by referencing a task number and Hughes report refer-

ence number. The task reports can be made available to the reader specific-

ally interested in the details omitted in the final report for the sake of brevity.

This Pioneer Venus Study final report describes the following baseline

c onfigurations:

0 "Thor/Delta Spacecraft Baseline" is the baseline presented at

the midterm review on 26 February 1973.

0 "Atlas/Centaur Spacecraft Baseline" is the baseline resulting
from studies conducted since the midterm, but prior to receipt

of the NASA execution phase RFP, and subsequent to decisions
to launch both the multiprobe and orbiter missions in 1978 and

use the Atlas/Centaur launch vehicle.

* "Atlas/Centaur Spacecraft Midterm Baseline" is the baseline

presented at the 26 February 1973 review and is only used in the

launch vehicle utilization trade study.

The use of the International System of Units (SI) followed by other

units in parentheses implies that the principal measurements or calculations

were made in units other than SI. The use of SI units alone implies that the

principal measurements or calculations were made in SI units. All conver-

sion factors were obtained or derived from NASA SP-7012 (1969).

The Hughes Aircraft Company final report consists of the following

documents:

Volume 1 - Executive Summary -provides a summary of the major
issues and decisions reached during the course of the study. A brief

description of the Pioneer Venus Atlas/Centaur baseline spacecraft

and probes is also, presented.
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Volume 2 - Science - reviews science requirements, documents the

science-peculiar trade studies and describes the Hughes approach
for science implementation.

Volume 3 - Systems Analysis - documents the mission, systems,
operations, ground systems, and reliability analysis conducted on
the Thor/Delta baseline design.

Volume 4 - Probe Bus and Orbiter Spacecraft Vehicle Studies -

presents the configuration, structure, thermal control and cabling
studies for the probe bus and orbiter. Thor/Delta and Atlas/Centaur
baseline descriptions are also presented.

Volume 5 - Probe Vehicle Studies - presents configuration,
aerodynamic and structure studies for the large and small probes
pressure vessel modules and deceleration modules. Pressure
vessel module thermal control and science integration are discussed.
Deceleration module heat shield, parachute and separation/despin
are presented. Thor/Delta and Atlas/Centaur baseline descriptions
are provided.

Volume 6 - Power Subsystem Studies

Volume 7 - Communication Subsystem Studies

Volume 8 - Command/Data Handling Subsystems Studies

Volume 9 - Altitude Control/Mechanisms Subsystem Studies

Volume 10 - Propulsion/Orbit Insertion Subsystem Studies

Volumes 6 through 10 - discuss the respective subsystems for the
probe bus, probes, and orbiter. Each volume presents the sub-
system requirements, trade and design studies, Thor/Delta baseline
descriptions, and Atlas/Centaur baseline descriptions.

Volume 11 - Launch Vehicle Utilization - provides the comparison
between the Pioneer Venus spacecraft system for the two launch
vehicles, Thor/Delta.and Atlas/Centaur. Cost analysis data is
presented also.

Volume 12 - International Cooperation - documents Hughes suggested

alternatives to implement a cooperative effort with ESRO for the
orbiter mission. Recommendations were formulated prior to the
deletion of international cooperation.

Volume 13 - Preliminary Development Plans - provides the

development and program management plans.
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Volume 14 - Test Planning Trades -documents studies conducted to
determine the desirable testing approach for the Thor/Delta space-
craft system. Final Atlas/Centaur test plans are presented in
Volume 13.

Volume 15 - Hughes IRD Documentation - provides Hughes internal
documents generated on independent research and development money
which relates to some aspects of the Pioneer Venus program. These
documents are referenced within the final report and are provided for
ready access by the reader.

Data Book -presents the latest Atlas/Centaur Baseline design in an
informal tabular and sketch format. The informal approach is used
to provide the customer with the most current design with the final
report.
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1. SUMMARY

The Pioneer Venus mission study was conducted for a probe spacecraft

and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/

Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed
is controlled by ground commands to as low as 5 rpm for science instrument

scanning on the orbiter and as high as 71 rpm for small probes released from

the probe bus. A major objective in the design of the attitude control and

mechanism subsystem (ACMS) was to provide, in the interest of costs, maxi-

mum commonality of the elements between the probe bus and orbiter space-

craft configurations. This design study was made considering the use of

either launch vehicle.

The basic functional requirements of the ACMS are derived from spin

axis pointing and spin speed control requirements implicit in the acquisition,
cruise, encounter and orbital phases of the Pioneer Venus missions. A
summary of the derived ACMS functional requirements are shown in Table 1-1.

The ACMS will provide the means of controlling the spacecraft attitude, angu-
lar momentum, translational velocity and mechanically articulated elements

during all phases of the mission after separation from the launch vehicle.
The following primary functions will be performed by the ACMS:

1) Attitude sensing. Provide attitude sensors, sensor data pro-
cessing and telemetry data conditioning required for ground
determination of the spin axis attitude in celestial coordinates.

2) Attitude/velocity control. Provide controls for the firing of
propulsion subsystem reaction jets to precess the spin axis
attitude and change the spacecraft velocity in response to ground
commands.

3) Spin speed control. Provide control of the firing of propulsion
subsystem reaction jets to change the rotor spin speed in res-
ponse to ground commands.

4) Nutation damping. Provide positive damping of the spin axis
nutation motions.

5) Spin angle reference. Provide a spin angle reference relative
to celestial references for science experiments.
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TABLE 1-1. ACMS FUNCTIONAL REQUIREMENTS SUMMARY

Thor/Delta Mission Atlas/Centaur Mission
Function Requirement Requirement

Spin axis Error < 0. 9 deg when spin axis Error 50.9 deg when spin axis
attitude sensing within 5 deg of ecliptic normal within 5 deg of ecliptic normal

Attitude/AV Control attitude within ±2. 5 deg Control attitude within ±2. 5 deg
control of ecliptic normal during cruise of ecliptic normal during cruise

Control thrust vector to ±4 percent Control thrust vector to ±4 percent
magnitude and ±4 deg direction magnitude and ±:4 deg direction

Spin speed Vary spin speed over range of Provide automatic spinup follow-
control 5 to 100 rpm to ±0. 6 rpm ing separation to 5 rpm

Vary spin speed over range of
5 to 60 rpm to ±0. 6 rpm

Despun antenna Control pointing of beam to Control pointing of beam to

control ±2 deg of earthline in spin plane ±1 deg of earthline in spin plane
(orbiter only) (orbiter only)

Spin angle Provide spin angle reference Provide spin angle reference
science reference signal to ±0.4 deg signal to ±0.4 deg

Magnetometer Extend sensor radially 1.07 m Extend sensor radially 4.4 m
sensor (42 in.) (14.5 ft) (orbiter only)
deployment

Bicone antenna Extend axially 21. 5 in. Not required
deployment (probe bus only)



6) Despun antenna control (orbiter only). Provide automatic azimuth
rate stabilization and pointing control of the despun antenna in
response to ground commands.

7) Bicone deployment (Thor/Delta probe bus only). Provide mech-
anism for extension of bicone antenna following separation from
Thor/Delta launch vehicle

8) Magnetometer deployment. Provide mechanism for extension
of magnetometer head following separation from launch vehicle.

1. 1 SUBSYSTEM DESIGN ISSUES

The baseline ACMS design and its elements were selected as the
result of extensive performance and design tradeoffs conducted during the
study contract. The use of existing hardware elements and technology, as
well as the incorporation of substantial operational flexibility were empha-
sized during these tradeoffs. During the course of the system design study
contract the Atlas/Centaur was selected as the baseline launch vehicle. As a
result of this selection the original Thor/Delta baseline ACMS subsystem

design was modified accordingly. The key issues resolved in the subsystem
design were:

1) The attitude determination concept

2) The attitude/velocity/spin speed control concept

In addition, many hardware design tradeoffs were required to select the
baseline design. The results of these tradeoffs are summarized in Table 1-2.

The primary criteria considered in the tradeoffs were weight, cost and com-
plexity (reliability) to achieve the required performance.

1. 2 BASELINE SUBSYSTEM DESIGN SUMMARY

The spacecraft spin stabilization concept employs basic gyroscope
stability of the spinning rotor to minimize the frequency of attitude correc-
tions, and exploits the attitude control simplicity and long life advantages
associated with spinning spacecraft. The main elements of the spacecraft are

the spinning rotor, and in the case of the orbiter, the despun earth-oriented
assembly containing the communication antenna on the orbiter, a rotating
interface, which consists of conventional ball bearings, dc torque motor, and
sliprings, permits rf and electrical signal transfer to take place. Primary
control of the rotor spin speed and orientation is accomplished by the ACMS.
Figure 1-1 illustrates the functional block diagram of the baseline ACMS.
The operational sequence of the subsystem functions is summarized for the

probe bus mission in Table 1-3 and for the orbiter mission in Table 1-4.

The proposed attitude determination design utilizes dual slit sun and

star sensors to measure the sun and star positions relative to spacecraft
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TABLE 1-2. ACMS KEY TRADEOFF AND ISSUES SUMMARY FOR
ATLAS CENTAUR BASELINE

Baseline Other Alternatives
Tradeoff/Issue Selection Considered Rationale For Selection

Attitude determination Use sun and stars Use earth and Venus Provide best operational flexibility
concept for inertial as inertial targets Sun and stars provide better

target point source targets throughout
mission
Existing sensor design technology
can be used.

Star visibility Point spin axis Point spin axis More detectable stars in southern

versus spin axis parallel to south parallel to north hemisphere
orientation during ecliptic normal ecliptic normal
cruise

Thruster configuration 2 axial jets (3 on Various configurations Minimum number of jets for
orbiter) which would provide complete operational redundancy
4 radial jets acceptable performance and minimum system weight

Sun sensor type Dual slit type Digital sun aspect Simplest design
type and analog type Lowest cost
sensor Can use common data processor

electronics with star sensor
Existing design and space
proven

Star sensor type Solid state dual Photomultiplier Lowest weight
slit detector type tube (PMT) Lowest program cost

detector type Most reliable

BAPTA design

Motor Brushless motor Brush motor Existing design and

space proven

Shaft and Beryllium Titanium Lowest weight
housing material

Shaft angle Optical Magnetic and Lowest weight
encoder Mechanical Low spin speed operation capability

Magnetometer 3 segment (non- 5 segment (non- Failure of retractable boom
deployment boom retractable) retractable) type; to "retract" during retro
design type SPAR bi-stem firing will cause spacecraft

(retractable) type mission failure
and coilable lattice Lowest weight
(retractable) type
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TABLE 1-3. MISSIONS SEQUENCE PROBE BUS ACMS FUNCTIONS

Mission
Time Event ACMS Functions Notes

Separation = S Booster/spacecraft ACMS activated by commands
separation from command subsystem

Spin down rotor from 90 to Thor/Delta (T/D)
60 rpm
Spin up rotor from 0 to 5 rpm Atlas/Centaur (A/C)
Deploy bicone antenna T/D

S + 0. 3 h Reorient Attitude maneuver with T/D
spin axis to axial jets
south elliptic Nutation damping
normal

S + 1. 0 h Cruise operations Spin speed trim
(after acquisition) Attitude determination

using sun and star data
Deploy magnetometer boom T/D
Attitude trims to maintain
spin axis normal to
ecliptic +2. 50 deg
Nutation damping

S + 5, 20 Trajectory Attitude maneuvers with
and 50 days; corrections axial jets
and encounter 6V maneuvers using axial
(E) -30 days jets and/or radial jets

Attitude determinations
as required
Nutation damping

E - 23 days Large probe Attitude maneuvers with
release axial jets

Spin speed trim to 15 rpm
Attitude determination
Nutation damping

E - 20 days Small probe Spin speed trim to 71 rpm T/D
targeting and Spin speed trim to 47 rpm A/C
release Attitude maneuvers with

axial jets
4V maneuver with radial
jets
Nutation damping
Attitude determination
Spin angle release signal
for small probes

E-20 to Probe bus coast Spin speed trim to 60 rpm
E-18 days Attitude maneuver with

axial jets

E-18 days Probe bus Attitude maneuver with
trajectory axial jets
correction Attitude determination

AV maneuver with axial jet
Attitude determination

E-18 clay Probe bus coast Attitude determination
to entry Attitude trims as required
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TABLE 1-4. MISSION SEQUENCE OF ORBITER ACMS FUNCTIONS

Mission
Time Event ACMS Functions Notes

Separation = S Booster/spacecraft ACMS activated by commands
from command subsystem
Spin down rotor from 90 to Thor/Delta

60 rpm (T/D)
Spin up rotor from 0 to 5 rpm Atlas/Centaur (A/C)

S + 0. 3 h Reorient spin Attitude maneuver with T/D
axis to south axial jets
ecliptic normal Nutation damping

S + 1.0 h Cruise operations Spin speed trims
to encounter (after acquisition) Attitude determinations as

required
Deploy magnetometer boom
Spin up to 30 rpm A/C
Attitude trims to maintain
spin axis normal to ecliptic
±2. 5 deg

S + 5, 20 and Trajectory Attitude maneuvers with
50 days; and corrections axial jets
insertion (I) AV maneuvers using axial
-20 days and/or radial jets

Attitude determinations as
required
Nutation damping

S + 5 days Initial despin Spin down rotor to 30 rpm T/D
(after first of hi-gain Activate antenna despin
midcourse) antenna control and point toward

earth line of sight

I - 1 day Inversion Reorient spin axis to T/D
maneuver north ecliptic normal

Attitude determination T/D
Nutation damping

I - 2. 5 h Orbit insertion Attitude maneuver
maneuver Attitude determination

Nutation damping
"Preburn" AV with axial

jets in the blind

I + 0. 5 h Sun Attitude maneuver normal
reorientation to sunline

Nutation damping
Attitude determination
after reacquisition

I + 1. 0 h Initial orbit Attitude maneuver to T/D

to + 2 days operation south ecliptic normal
Attitude maneuver to A/C
north ecliptic normal
Attitude determination
AV maneuvers with
axial jets
Nutation damping
Despin hi-gain antenna

I + 2 days Science Periodic attitude
to +225 days operations determinations

Weekly attitude maneuvers
to maintain spin axis
normal to elliptic ±2. 5 deg
Weekly AV maneuvers to
maintain 24 hour orbit
period and periapsis altitude
Despin hi-gain antenna
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coordinates. The sensors detect a field of view (FOV) crossing of the selected
inertial target each spin period due to vehicle spin rotation. Both sensors
use silicon detectors to develop an electrical pulse when the target crosses
the FOV. Three sun sensors used to cover an elevation FOV of 90 ± 75 deg
relative to the spin axis. The star sensor is capable of detecting +1.0 silicon

magnitude stars with a FOV of 25 deg centered nominally 58 deg from the +

spin axis. During the cruise phase of the mission, the spin axis is pointing
toward the south ecliptic pole to provide the best star visibility. A significant
feature of the proposed design is that both start sensor slits are utilized inde-

pendently for attitude determination. This is possible since each slit contains
its own silicon detector and signal conditioning electronics. By taking advan-

tage of sun- star- spacecraft geometry and the capability of selecting several
different stars as stellar targets throughout the mission, the two star slit

measurements are redundant to one another. Therefore, one star sensor with

independent dual slit detectors provides equipment redundancy.

The electrical signals from the sensors are processed by a common
attitude data processor (ADP) electronics unit. The time intervals between

pulses are measured and transmitted to the ground station for computation
of the spacecraft attitude. In addition, on board azimuth spin pulses are pro-
cessed for spin period synchronization of star gates, reaction jet firings,
probe release timing and science instruments references. A commandable
spin angle star gate is utilized in conjunction with a commandable star detec-

tion threshold setting to provide star reference selection capability. Both
star phase angle and brightness discrimination is used to minimize the false

alarm rate (FAR) and maximize the probability of detection. This provides

the operating flexibility to select the best stars to be used with the sun for

attitude determination throughout all mission phases.

The performance of the proposed attitude maneuver control design is

largely dependent on the reaction jet configuration (part of the propulsion sub-

system). The baseline arrangement has been selected to provide the most
reliability and flexibility for accurate execution of AV, precession, spinup,
.and spindown maneuvers with six jets. Two axial jets pulsed together or

separately at spin frequency generate spin axis precession; fired continuously
and separately, they generate translational AV along the spin axis direction.
Two pairs of radial jets thrust perpendicular to the spin axis at different c. g.
locations. Any pair pulsed at spin frequency will generate translational AV

as well as some precession. A single radial jet of either pair fired continu-

ously generates spinup or spindown. Addition of a seventh jet on the orbiter

spacecraft provides redundancy for orbital operations as well as several other
desirable features, e. g., another attitude control mode; redundancy for the

retro-preburn maneuver; and two additional AV modes, one of which allows a

balanced thrust to execute orbital corrections at 5 rpm with minimal attitude
perturbations. The latter feature is significant since a single axial jet must

be pulsed in a 180 deg bang-bang mode when used for orbital corrections at

5 rpm. This mode consists of pulsing the jet at twice spin frequency to
accumulate AV and limit attitude movement when angular momentum is low.

A mercury tube damper provides for passive damping of induced nutational

disturbances, thereby guaranteeing asymptotic nutational stability for the

spacecraft.
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The orbiter high gain directional antenna necessitates continuous

antenna boresight pointing towards the earth line-of-sight. A despin control

electronics (DCE) unit provides the control of the orientation of the despun

assembly section to satisfy this objective. Sun or star sensor information is

utilized to establish the inertial attitude of the rotor. A shaft angle encoder

(SAE) located in the bearing and power transfer assembly (rotating interface)

establishes the relative phase relationship between the rotor and the platform.

A brushless dc torque motor provides the torque to control the antenna bore-

sight pointing at a ground commandable phase relationship relative to the

selected inertial reference. This control torque continuously compensates

for disturbance torques produced by the bearing and sliprings. The resultant

steady state pointing error shall be less than +1. 0 deg.

The hardware elements which comprise the baseline ACMS are listed

in Table 1-5, along with their prior program usage. The location of these

elements on the spacecraft is indicated on Figure 1-2. The cross strapping of

the ACMS elements is illustrated in Figure 1-3. The only elements not

redundant are the star sensor sun shade and optics, BAPTA bearings and

motor core iron, and the nutation damper. However, these items have such

high reliability that the weight required for redundancy is not warranted.

The sun sensor design is essentially identical to those flow on the ATS,

Intelsat IV, and Telesat satellites, differeing only in the sensor mounting

bracket design.

The star sensor is a new design utilizing existing solid state detector

technology. A survey of existing star sensor manufacturers concluded that

no existing sensor is available with the capability of operating over the wide

range of spin speeds required for the Pioneer Venus mission. Relaxing the

weight constraints makes a photomultiplier tube (PMT) detector star sensor

feasible. However, two star sensors would be required per spacecraft for

detector redundancy. In addition, existing PMT sensors (such as the OSO-I

sensor) would require modifications to accommodate the wide range of spin

speeds. Two PMT sensors per spacecraft were estimated to be much less

cost effective than one solid state star sensor per spacecraft. As a result,

a solid state star sensor was also selected for the Atlas/Centaur launch vehicle

baseline design. Stray light from sources outside the star sensor FOV is

considered the major problem in star sensor design. Rejection of stray light

interference is accomplished by using a sunshield or baffle to prevent the "out

of the FOV" scattered light from striking the sensor optics. In addition, the

star gate prevents the sensor from responding when unwanted light sources

are in the FOV; i. e., Sun, Venus, Earth, or other stars.

The controls electronics design is similar to units built for other

Hughes spin stabilized satellites (Intelsat IV, Telesat, and military satellites).

The primary difference will be scale factor changes required for the wide

spin speed range (5 to 60 rpm) of operation required for the Pioneer Venus

mission.

The BAPTA design is similar to the units Hughes built for the Telesat

program, except for a modification to the shaft angle encoder for the low
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TABLE 1-5. ACMS BASELINE EQUIPMENT LIST

Number
Per

Component Spacecraft Mass, kg (Ib) Power, W Deviation

Sun sensors 3 0. 1(0. 2)/unit -- Telesat

Star sensors 1 2.5 (5.5) 1.0 New

Attitude data processor 2 1. 6(3. 6)/unit 4. O0 Milsat

Solenoid drivers (jet 1 1. 04 (2. 3) 2.0 Intelsat IV

and latch valves) (1 percent
duty cycle)

Nutation damper 1 1. 36(3. 0) -- Telesat

BAPTA (orbiter only) 1 6. 62 (14.6) 1. 0 Telesat

Despin control elec- 2 1. 95(4. 3)/ 5. 0 Telesat
tronics (orbiter only) unit

Thermal Louvers 0. 29(0. 65)/ -- Milsat

(probe bus) 10 unit
(orbiter) 12

Pin pullers 1 0. 06(0. 14)/ -- OSO
(orbiter only) unit

Magnetometer deploy- 1 (7. 2) -- New

ment mechanism
(orbiter only)

1-10



HIGH GAIN ANTENNA
(ORBITER)

C

ADP, SOLENOID DRIVERS, AND DCE
ELECTRONIC UNITS BAPTA

MAGNETOMETER BOOM
XTENDED (ORBITER)

STAR SENSOR

SUN SENSORS-

NUTATION THERMAL LOUVERS

DAMPER

SA

3R> I 2R

0 I 0

4R> <1R

A A
6A 7A (ORBITER ONLY)

AXIAL JETS ARRANGEMENT RADIAL JETS ARRANGEMENT

FIGURE 1-2. ACMS ELEMENTS ARRANGEMENTS

1-11



co
COMMAND 4
SUBSYSTEM

SUN SENSOR ATTITUDE
DATA
PROCESSOR 1 DESPIN

CONTROL

ONE DUAL SLIT ELECTRONICS

SOLENOID
DRIVERS

BAPTAI DESPIN
cCONTROL ATTITUDE ELECTRONICS

- DATA
STAR PROCESSOR 2
SENSOR

SOLENOID
DRIVERS

DATA
SUBSYSTEM

COMMAND
DECODER ADP 1 SOLENOID

ADP2 DRIVERS JETS

LATCH VALVES

COMMAND.
DECODER

FIGURE 1-3. ACMS ELECTRICAL CROSS STRAPPING CONFIGURATION

1-12



spin speed requirements, addition of sliprings, and a material change

(beryllium) to reduce weight.

The nutation damper is a scaled Telesat satellite design.

The deployment mechanisms are a new design since the requirements

are unique to the Pioneer Venus spacecraft design and mission. The principal

designs concerns are the deployment dynamics of the magnetometer boom.

To insure success, the design must be analyzable and testable prior to launch.

To this end, a detailed mathematical model of the proposed design will be

formulated in order to predict and analyze the load dynamics and stresses on

the mechanism during deployment.

In conclusion, no major technical problems are anticipated in the

design and development of the attitude control and mechanisms subsystem for

the Pioneer Venus mission utilizing existing hardware and technology. The

design of the star sensor sunshield and the preamplifier to achieve a low

noise level (i. e., good signal-to-noise ratio), and the design of the magneto-

meter deployment mechanism are areas which design emphasis will be applied

during the spacecraft development.
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2. INTRODUCTION

The purpose of this report is to present the baseline attitude control
and mechanisms subsystem (ACMS) design approach and to show how the
design concept satisfies detail mission requirements using a Thor/Delta
launch vehicle. The baseline design approach stems from a series of trade
studies (bibliography) guided by mission objectives, simplicity of design, and
maximum utilization of space proven hardware. The specific objectives
accomplished in the task studies were:

1) Define the mission attitude determination requirements

2) Identify candidate celestial references sources for attitude
determination

3) Analysis and tradeoff candidate sensing schemes

4) Develop preliminary inertial attitude determination mechanization
scheme for the selected sensor configuration

5) Identify candidate jet thruster configurations

6) Identify attitude and AV errors associated with jet thruster
configuration and required maneuvers

7) Develop alternate jet thruster modes for selected baseline
configuration

8) Identify and develop candidate despin control mechanizations for
orbiter hi-gain antenna pointing

9) Survey current hardware designs being used on existing space
programs to determine applicability for the Pioneer Venus
mis sion

10) Analyze the proposed baseline design to assess the performance
and feasibility of implementation

11) Define hardware performance and design characteristics of the
baseline design

12) Identify potential problem areas associated with proposed design
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Section 3 of the report contains the mission requirements relative to

attitude determination for probe spacecraft launch in January 1977 and an

orbiter spacecraft launch in May 1978.

Section 4 contains the conceptual design tradeoffs and considerations

made in selecting a baseline attitude sensor and thruster configuration.

Section 5 functionally describes the baseline design for the spacecraft

to be launched by Thor/Delta launch vehicle.

Appendices A and B describe the analysis and models used to verify

the performance aspects of the baseline design.

Appendix C describes the detail hardware components that comprise

the baseline design.

An additional study task was added which required the investigation of

the use of an Atlas/Centaur as the spacecraft launch vehicle. As a result,

mission requirements, science requirements, and weight allocations were

modified in an attempt to reduce spacecraft cost. Section 6 of this report

summarizes the changes in requirements and the subsystem design tradeoffs

made in selecting a baseline design for the Atlas/Centaur launched spacecraft.

Sections 3 through 5 of this report are based on the mission and

spacecraft baseline design existing at the midterm study review presented

to NASA-Ames Research Center on 26 February 1973 using the Thor/Delta

launch vehicle. Section 6 of this report is based on the science payload

definition and mission requirements existing on 30 April 1973 and represents

a preliminary analysis of the design impact of these requirements on the

subsystem design.
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3. FUNCTIONS AND REQUIREMENTS

The Pioneer Venus mission employs two spacecraft, a probe bus and

an orbiter, as transport vehicles for the science instruments. The attitude

control and mechanisms subsystem (AMCS) shall provide the means for

controlling the spacecraft attitude, angular momentum, translational

velocity, and mechanically articulated elements during all phases of the

mission after separation from the launch vehicle.

The primary functions to be performed by the ACMS are tabulated in

Table 3-1. Conventions and definitions used in this section are presented in

Table 3-2. Spacecraft mass properties assumed are shown in Table 3-3.

The purpose of this section is to summarize the preliminary design

and performance requirements of the ACMS. Requirements are obtained

from contractual requirements, mission operational requirements, and

system design requirements. Performance requirements and error sources

are identified so that they may be controlled in subsequent design specifica-

tions.

3. 1 OPERATIONAL REQUIREMENTS

The attitude and velocity control maneuver requirements are derived

from the planned mission scenarios. To maximize commonality of the

designs between the probe bus and the orbiter spacecraft, the mission

scenarios have been made as similar as is possible. To accomplish this,

the transit phase sequence of events for both spacecraft are planned to be

nearly identical. The maneuvers requirements for the probe bus encounter

phase must differ from the orbiter Venus orbit insertion maneuvers because

of different mission requirements. The in-orbit science phase maneuvers

for the orbiter will be similar to the transit phase of the missions, thus

resulting in similar performance requirements.

Transit Phase

The transit phase of both missions will require initial spin speed

corrections and spin axis precession maneuvers following acquisition of the

spacecraft by the ground tracking stations. The spin speed will be adjusted

to approximately 60 rpm, and the plus spin axis will be positioned to point

normally toward the south ecliptic pole for the cruise phase of -the mission.

3-1



TABLE 3-1. BASIC ACMS FUNCTIONS

Function Provision

Attitude sensing Provide attitude sensors, sensor data
processing, and telemetry data con-
ditioning required for ground deter-
mination of the spin axis attitude in
celestial coordinates.

Attitude/velocity control Provide controls for the firing of
propulsion subsystem reaction jets to
precess the spin axis attitude and
change the spacecraft velocity in
response to ground commands.

Spin speed control Provide control of the firing of propul-
sion subsystem reaction jets to change
the rotor spin speed in response to
ground commands.

Nutation damping Provide positive damping of the spin
axis nutation motions.

Spin angle reference Provide a spin angle reference rela-
tive to celestial references for science
experiments.

Despun antenna control Provide automatic azimuth rate stabi-
(orbiter only) lization and pointing control of the

despun antenna in response to ground
commands.

Bicone deployment (probe only) Provide mechanism for extension of
bicone antenna following separation
from Thor/Delta launch vehicle.

Magnetometer deployment Provide mechanism for extension of
magnetometer head following separa-
tion from launch vehicle.
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TABLE 3-2. CONVENTIONS AND DEFINITIONS

Term Definition

Primary reference plane The separation plane between the launch vehicle adapter and the spacecraft

Spacecraft coordinate system Consists of three mutually perpendicular axes: x, y, and z. The x and y
axes lie parallel with the primary reference plane. The z axis is perpen-
dicular to the primary reference plane. The spacecraft shall spin about the

z axis. The origin of coordinate system is at the spacecraft center of mass.

Spacecraft angular reference The roll axis is coincident with the spacecraft z axis. The pitch (x) axis

passes through the center of gravity and lies in the plane containing the z

axis and the sun sensor. The yaw (y) axis forms a right-hand coordinate
system.

Spacecraft station numbers The Hughes Station 0. 00 shall be the planar surface at the primary reference

plane. Positive statioh numbers shall be assigned along the z axis in the +z

direction (forward). Negative numbers shall be below the separation plane
(aft), i.e., into the additional volume provided outside or within the adapter.

Field of view The solar angle through which the optical sensors are sensitive to external

stimulation

Alignment reference axis Defined by a physical reference fixture which has a known relationship to the

center lines of the field of view

Line of sight A line passing through the spacecraft center of the mass and a point in inertial

space

Sun or star angle The angle between the sun or star line of sight and the spacecraft z-axis

Spin axis The inertial spin axis of the spinning section

Angular momentum vector The vector which defines the total angular momentum of the spacecraft,
including the motions of all elements relative to the spacecraft center of mass.

The direction of the angular momentum vector is normally in the direction of

the +z axis.

Rotor bearing axis The axis about which the spinning section nominally rotates relative to the

despun section (orbiter only)

Bearing runout The instantaneous deviation of a rotational axis from the nominal axis of

rotation (orbiter only)

Nutation The coning motion of the spin axis relative to the angular momentum vector

Wobble The coning motion of the spacecraft z-axis at rotor spin frequency relative to

the spin axis due to dynamic unbalance of the rotor

3-3



TABLE 3-3. PIONEER VENUS SPACECRAFT MASS PROPERTIES ANALYSIS -
THOR/DELTA BASELINE MISSION PROFILE

Moment of Inertia
Center

Mass of Gravity I, Iy I z

Condition kg lb M In. kg-M 2 Slug-ft2 kg-M 2 Slug-ft2 kg-M 2 Slug-ft Z IR/IT

Multiprobe spacecraft

At launch, boom retracted 384.10 846.8 1.07 42. 3 139.8 103.1 132.5 97.7 163.8 120.8 1.20

At launch, boom extended 384. 10 846.8 1.07 42. 3 141.0 104. O0 134.6 99. 3 167. 2 123. 3 1.21

After large probe separation 248.75 548.4 0.94 32.1 94.8 69.9 96.1 70.9 147.6 108.9 1.55

After small probe separation 146.83 323.7 0.73 28.8 48.8 36.0 50. 3 37. 1 88.4 65.2 1.79

Orbiter spacecraft

At launch, boom retracted 292.84 645.6 0.71 28.0 72.1 53.2 64.8 47.8 111.0 81.9 1.62

At launch, boom extended 292.84 645.6 0.71 28.0 73.5 54.2 67.0 49.4 114.4 84.4 1.63

Before Venus orbit insertion 279.82 616.9 0.72 28.4 68.3 50.4 65.9 48.6 110. 1 81.2 1.64

In Venus orbit 191.10 421.3 0.74 29.1 66.3 48.9 63.9 47.1 108.2 79.8 1.66

Spent spacecraft 179.75 396.3 0.75 29.7 61.0 45.0 62.5 46.1 103.9 76.6 1.68



Following the initial reorientation maneuver, the bicone antenna will be
mechanically deployed on the probe bus and the magnetometer will be mechan-
ically extended by a boom on each spacecraft. Midcourse trajectory correc-
tion maneuvers are planned to occur at 5, 20, and 50 days after launch. A
final trajectory correction is planned at 30 days from encounter for the probe
bus, and at 20 days from orbit insertion for the orbiter. The probe bus
transit phase is approximately 108 days duration. A mechanically despun
antenna satisfies the orbiter rf requirements during both the transit and
orbital phases of the mission. The attitude determination and maneuver
requirements for the transit phase of the mission are summarized in Table 3-4
for the probe bus, and Table 3-5 for the orbiter.

Probe Bus Encounter Phase

The encounter phase (starting at E-20 days) of the probe bus mission
requires reorientation of the spin axis along the spacecraft velocity vector
and spin down to approximately 15 rpm for large probe separation. Following
large probe release, a small probes targeting (AV) maneuver and rotor spin
up to approximately 71 rpm prior to small probes separation will be required.
After small probes separation, the spin axis will be reoriented to the north
ecliptic pole and the spin speed adjusted to approximately 60 rpm to allow
battery charging, thermal control and use of the bicone antenna for approxi-
mately 2 days. At E-18 days, a bus targeting (AV) maneuver will be required
to adjust the entry trajectory. Following the bus targeting maneuver, the spin
axis attitude will be oriented to obtain a sun angle of 45 deg for the power sub-
system and thermal control. At E-10 days, the spin axis attitude will be
adjusted to the final position for entry into the Venus atmosphere.

Orbiter Encounter Phase

The Venus orbit insertion phase of the orbiter mission starts at I-I
day with a reorientation of the spin axis to the north ecliptic pole. At approxi-
mately 1.5 h prior to firing of the retro motor for orbit insertion, the spin
axis will be precessed (in the orbit plane) 27 deg from the north ecliptic pole
for thrust-vector alignment. Immediately prior to retro firing, a preburn
firing of the propulsion subsystem reaction jets will be required to dump
excess propellant not used during the transit phase of the mission. The pre-
burn and retro motor firing maneuvers must be executed automatically from
stored (on board) ground commands because of earth occultation by Venus.
If the spacecraft has not been reacquired by the ground station, 30 min follow-
ing retro firing, the spin axis attitude will be precessed automatically to the
north ecliptic pole for thermal control. After reacquisition of communication
by the ground station, the spin axis will be precessed to the south ecliptic
pole to start the in-orbit cruise science operations. Initial orbit trim (AV)
maneuvers will be required to correct the orbit period and periapsis altitude.
Subsequent orbit trims and attitude corrections will be required on a weekly
basis for a period of 225 days.
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TABLE 3-4. PROBE BUS ATTITUDE DETERMINATION AND MANEUVER REQUIREMENTS

Spin Axis Orientation Attitude Measurement

Time, days (Ecliptic Coordinate) Uncertainty Spin Nominal Nominal Maneuvers Operation

Mission L = Launch Right Ascension, Declination, Spin Axis, Spin Angle, Rate, Sun Angle, Time,

Phase E = Encounter deg deg deg deg rpm deg A MPS Adeg Arpm Hours

Acquisition L + 0 39 -25 h5.0 ±0.4 60+10 38 66.4 -30 0.7

Cruise L + 0 to 108 Random -90 ±3 +0.9 ±0.4 60 90 -

Midcourse L + 5, 20, Random -90<6 <0 +3.0
+  

±0.4 60 15 to 165 <72 <190.4 - 1.0

maneuvers 50, 98

Large probe E - 20 13 +28 ±2.5 ±0.4 15 45 - 126.9 -45 3.0

separation

Small probe E - 20 39 +36 ±2.5 ±0.4 71 37 < 5.4 24.1 +56 4.5

separation

Bus coast E - 20 to -18 Random +90 ±3 ±1.0 ±0.4 60 90 - 52.9 - 0.3

Bus tar- E - 18 16 + 7 ±3.0 +0.4 60 38 <16.7 83.1 -11 3.0

geting

Bus coast E - 18 to -10 8 0 ±2.5 ±0.4 60 45 to 58 - 11.6 - 0.3

Bus entry E - 10 to E 14 + 3 +2.5 ±0.4 60 50 to 68 - 7.5 - 0.3

Assumes launch date January 1977

+Assumes thrust parallel to the spin axis



TABLE 3-5. ORBITER ATTITUDE DETERMINATION AND MANEUVER REQUIREMENTS

Spin Axis Orientation Attitude Measurement

Time, days (Ecliptic Coordinate) Uncertainty
Spin Nominal Nominal Maneuvers Operation

Mission L = Launch Right Ascension, Declination, Spin Axis, Spin Angle, Rate, Sun Angle, Time,

Phase E = Encounter deg deg deg, deg rpm deg AMPS Adeg Arpm Hours

Acquisition L + 0 199 -11 +5.0 ±0.4 60+10 92 - 80 -30 0.7

Cruise L + 0 to +5 Random -90 ±3 ±0.9 10.4 60 90 - -

Midcourse L + 5, 20, Random -90<6 <0 +3.0
+  +0.4 60 to 30 15 to 165 1 <72 <190.4 - 1.0

maneuvers 50, 167

Cruise L + 5 to 186 Random -90 3 ±0.9 ±0.4 30 90 - - -30 0.3

Insertion I - 1 Random +90 ±3 ±0.9 ±0.4 30 90 - 180 - 0.5

reorientation

Orbit I - 0 27 +63 ±2.5 +0.4 30 108 - 27 - 2.0

insertion
(retro)

Post I - 0 Random +90 ±3 +0.9 ±0.4 30 90 <207 - Z.0

insertion
reorientation

In orbit I + 1 to +225 Random -90 +3 ±0.9 +0.4 5 90 -- -25 0.3

cruise,
(science)

In orbit I + every 7 Random -90 ±3 +0.9 ±0.4 5 90 <5.0 - - <3.0

periapsis
AV

In orbit I + every 7 Random -90 ±3 +0.9 ±0.4 5 90 <0.5 < 5.0 - <3.0

apoapsis
A V

:Assumes launch date May 1978 and 27 deg North periapsis latitude Venus orbit

+Assumes thrust parallel to the spin axis



3.2 SUBSYSTEM REQUIREMENTS

The ACMS must provide an attitude reference and science instruments,
thrust vector control, and communication antenna pointing capability. It will

therefore be necessary to determine and control both the inertial attitude of

the spacecraft spin axis and the phase of the inertial spin angle throughout
all mission phases. Time and operational conditions permitting, the attitude

control function can be accomplished most reliably by minimizing the com-

plexity of spacecraft performed functions and performing all attitude and

maneuver computations at the ground station. An analysis of both the probe
and orbiter spacecraft mission scenarios indicates this philosophy is practical

and can be implemented. Therefore, the spacecraft will be required to make

only attitude data measurements. The data will be telemetered to the ground

station for processing to obtain near-real-time attitude determination.
Following the attitude determination by the ground station, commands will be

generated and transmitted back to the spacecraft as required for velocity and
attitude control maneuvers, antenna pointing and spin angle pointing references

for the science instruments. The subsystem functional requirements are

discussed in the following paragraphs.

Attitude Determination Requirements

The system (including both the spacecraft and the ground station) shall

be capable of measuring the spacecraft spin axis orientation relative to

selected inertial references throughout the operational phases of both the

probe mission and the orbiter mission. The measurements shall be made by

spacecraft sensors and the data transmitted via telemetry to the ground
station for processing and attitude determination computations. Attitude

determinations will be made prior to and following all orbital and attitude

orientation maneuvers to ascertain the spacecraft attitude.

The spin axis orientations necessary to fulfill the mission objectives
will have a significant impact on the attitude determination scheme. Both the

probe and orbiter spacecraft spin axis shall be oriented normal to the ecliptic
plane throughout the cruise mode of operation to provide maximum science
coverage and to minimize the weight of the power and thermal control sub-

systems. The spin axis attitude shall be determined to an accuracy of +0. 9

deg to provide a known inertial reference for the science instrument pointing,
antenna pointing, and thrust vector pointing. The spin axis attitude needs

only periodic measurement; the spin angle must be measured continuously.

Since most of the available celestial references lie within +60 deg

declination of the ecliptic plane, simple stellar detectors can be placed on

the spinning spacecraft for viewing selected celestial references each spin

period. In general, all key spacecraft maneuvers will start from the cruise

mode attitude, i.e., normal to the ecliptic. Assuming that the required

attitude precession and AV maneuvers can be accurately and predictably per-

formed, only the initial cruise mode attitude determination is essential to

mission success. However, it is highly desirable to have positive confirma-

tion of the new spacecraft attitudes following any maneuvers. As a primary

objective, therefore, the attitude determination scheme should be capable of
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determining the spacecraft attitude at'all required attitudes. In addition, the

attitude determination scheme should permit recovery of attitude control from

all random spacecraft attitudes.

The attitude determination scheme must be capable of proper operation

in the presence of full sun light and maximum Earth and Venus albedo on both

the probe and orbiter buses. In addition, an inertial reference will be required

on the orbiter bus for the antenna despin control system and science instru-

ments for up to 3 h during sun eclipse and earth occultation periods. The

eclipse and occultation periods may occur simultaneously during some periods

of the mission.

The time from the initiation of an attitude determination operation to

the availability of valid attitude data should not exceed 3 h. Quick look

attitude determination checks should be capable of being performed using raw

telemetry data. The attitude determination scheme must be compatible with

the science data gathering requirements.

The system shall be capable of determining the actual spacecraft

attitudes for orientations shown in Tables 3-4 and 3-5 to the accuracies

indicated.

Maneuver Control Requirements

The ACMS must provide the control required for a combination of jets

that satisfies all attitude, AV, and spin speed requirements during the various

mission phases. The spacecraft is also required to be spin stabilized for

attitude stability. In addition, the ACMS must provide damping of any nuta-

tional transients induced by maneuvers.

The firing of reaction jets to contkrol the spacecraft spin speed, spin

axis attitude and velocity shall be executed from stored commands received

from the ground. The spacecraft will be in view of the ground station during

all required maneuvers, except during the retro firing for orbit insertion of

the orbiter spacecraft. However, direct real time maneuver control will not

be possible due to long communication time delays (see Figure 3-1). There-

fore, the magnitude and direction of each required maneuver will be computed

on the ground and executed automatically by the spacecraft at the proper time

upon receipt of ground control commands.

A preliminary spin axis attitude error budget has been originated and

is summarized in Table 3-6. The average spin axis attitude must be main-

tained to +2.5 deg of ecliptic normal for communication antennae coverage in

cruise and orbit as well as science instruments pointing in orbit. During

cruise and orbital operations, the average spin axis attitude will be measured

to an accuracy of +0.9 deg. The attitude correction frequency will depend on

the disturbance torques (solar, aerodynamic, maneuver). The average spin

axis attitude must be controlled to +3 deg of desired attitudes required for

probe separation, probe bus entry, and orbit insertion. In these instances,

the average spin axis attitude is nominally measured to an accuracy of 2.5 deg.

However, if initial attitude uncertainty and open loop precession errors are
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TABLE 3-6. SPIN AXIS ATTITUDE ERROR BUDGET (30-)

Total Attitude Allowable Allowable

Mission Error Allowed Measurement Error Control Error
Phase (ea), deg (em), deg (ec), deg

Cruise and orbit 2.5 0.9 2.3

AV maneuvers

Axial 4.0 3.0 2.5

0.9 3.0
open loop {open loop}

Radial 2.0 1.0 1.7

Probe separation 3.0 2.5 1.7
Bus entry
Orbit insertion 0.9 2.7

open loop open loop

Where

2 2 2
e = e + e

a n c
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sufficiently small, this requirement may be satisfied without an attitude
determination and touchup. The average spin axis attitude will not be allowed
to be within 15 deg of the sunline so that the sun sensor can always be used
as the primary roll reference.

During AV maneuvers, the cumulative jet impulse shall be controlled
to +4 percent magnitude and +4 deg in direction. For a spinning vehicle, the
impulse is nominally delivered at a fixed angle with respect to the inertial
spin axis. Therefore, the average spin axis attitude must be controlled
during AV maneuvers. The amount of control depends upon which type of jet
is used. For thrust parallel to the spin axis (axial jets), the attitude error
is the dominant one, and consumes almost the entire directional error allowed.
For thrust perpendicular to the spin axis (radial jet), the attitude error is
one of several significant error sources and is allocated only part (typically
2 deg) of the total directional error.

The AV required for midcourse maneuvers can be in an arbitrary
direction. If the attitude is measured, the AV directional error due to
attitude error is defined to be the root sum square of the measurement error
and the execution error. Since the attitude determination scheme may not
always allow measurement of the average spin axis attitude, the precession
to the required AV attitude must be able to be accurately performed open loop
to limit the attitude error to that allocated for the maneuver. Since the
required AV direction may be within 15 deg of the sunline, a jet combination
which permits an impulse component orthogonal to the average spin axis is
required. The ACS shall appropriately constrain itself and the propulsion

subsystem to satisfy these constraints.

The AV required for small probe targeting shall be in a direction
perpendicular to the small probe separation attitude. The AV required to
retard the probe bus shall be nearly parallel to the probe bus entry attitude.
Prior to orbital insertion, a preburn parallel to the spin axis (insertion
motorAV) direction is -probably required to best fit transit and orbit trajec-
tories. The AV required to correct orbital perturbations due to solar and
drag effects are always parallel to the nominal spin axis direction (ecliptic
normal) in the polar orbit.

The Thor/Delta spacecraft spin rate shall be controlled to 60 +10 rpm

throughout the probe bus mission, except for the large probe separation when
the spin rate shall be reduced to 15 +1 rpm and small probes separation when
the spin rate shall be increased to 7T+0. 6 rpm. The orbiter bus shall operate
at 60 +10 rpm until after the first midcourse maneuvers, then the spin rate
will be reduced to 30 +5 rpm for despun antenna operation. Following firing
of the retro motor for-Venus orbit insertion, the spin rate shall be reduced
to 5 +1 rpm for in-orbit science operation.

Stability Requirements

The spacecraft shall be statically and dynamically balanced to reduce

the wobble of the spin axis. The wobble angle shall not exceed 0.2 deg during
the science phases of the mission.
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The spin axis nutation due to maneuver disturbance torques shall not

exceed 1.6 deg on the probe bus and 3. 9 deg on the orbiter. Nutation damp-

ing shall be provided to reduce the residual nutation to 0. 1 deg within 3 h

following any maneuver. The attitude control system shall be capable of

proper operation in the presence of these spacecraft motions.

High Gain Antenna Despin Control (Orbiter Only)

The attitude control system shall provide the means of despinning the

high gain antenna and controlling the centerline of the beam to +Z deg of the

earthline in the spin plane. The inertial pointing of the antenna shall be

commanded from the ground. The system shall be capable of automatic

despin control and pointing to the commanded inertial angle over the rotor

spin speed range of 4 to 35 rpm. The pointing command resolution shall be

0.4 deg.

Spin Angle Reference

The attitude control system shall provide an inertial spin angle refer-

ence for controlling the spin phase angle release of the small probes, and as

a spin phase angle reference for science instruments. The phase error of the

reference signal shall be <0.4 deg.

Mechanism Requirements

The detail requirements for each of the mechanisms are presented

below. The overriding requirements implied in each design are simplicity

of design, minimum weight and maximum reliability.

1) Thermal Louvers Requirements

Actuation Unit actuated by direct sensing
of the mounting surface
temperature

Closing temperature set point 13 +10 C (55 +2 0 F)

Opening temperature set point 27 +lC (80 +2 0 F)

2) Bicone Antenna Deployment Requirements (Thor/Delta baseline)

Deployment stroke 44.6 cm (21.5 in) minimum

Deployment time 10 sec

Deployment accuracy +0.254 cm (+0. 1 in)

Deployment loads 2. 0 kg (4.4 lb) antenna mass
Two 1 cm (3/8 in) flex coax

cables

3-12



Deployed position
natural frequency

Bending 20 Hz

Torsional 20 Hz

Summary

Attitude control subsystem functional requirements are summarized

in Table 3-7. These requirements form the basis for the trade studies

described in the subsequent section.

TABLE 3-7. ATTITUDE CONTROL SUBSYSTEM FUNCTIONAL
REQUIREMENTS SUMMARY

Function Requirement Derivation

Spin axis attitude Error S2.50 at all spin axis attitudes >150 from Initial spacecraft acquisition

determination sunline, except error 50.90 for spin axis within Midcourse maneuvers

50 of ecliptic normal Antenna pointing

Orbit insertion

Probe targeting and separation

Science pointing

Attitude/ AV control Maintain average spin axis attitude to f2.50 of Same as above

normal to ecliptic

Orient spin axis *-3. 0 of other required attitudes Orbit period trim

Control jet thrust vector to ±40 magnitude, 4%0
direction in inertial space Periapsis altitude adjust

Spin speed control Vary spin speed over range of 5 to 100 rpm to Third stage attitude stability,
<+0.6 rpm (<100 rpm)

Cruise attitude stability (30 to
60 rpm)

Large probe separation (15 rpm)

Small probe separation (71 rpm)

Experiments (5 rpm)

Nutation damping <20 min time constant at 60 rpm Transients induced by maneuvers

<45 min time constant at 5 rpm

Residual nutation 0. 1 deg in 3 h after any Science pointing stability
maneuver

Despun antenna Control CL of beam to +2 percent of earthline in Mechanically despun antenna on

control spin plane orbiter

Spin angle reference Measure and control inertial spin angle reference Probe separation
marks for experiments to +0. 4 deg

Strobe signal for experiments
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4. DESIGN TRADEOFFS

Several design tradeoffs were required in the functional areas of

attitude determination and attitude/AV/ spin speed control. These tradeoffs

are summarized in the following'sections. The trades associated with fixed

versus despun antenna and mechanically versus electronically despun antenna

are discussed in the communications subsystem final report, Volume 7. The

detailed design tradeoffs associated with the high gain antenna despin control

are discussed in Appendix B of this report. The fundamental trades associ-

ated with the configuration of the mechanisms are covered in the probe bus

and orbiter spacecraft trades final report, Volume 4. The detail design

tradeoffs of the mechanisms is covered in Appendix C of this report.

4. 1 ATTITUDE DETERMINATION

The fundamental trades associated with attitude determination were:

1) Choice of inertial attitude references: Angles between the space-

craft spin axis and two appropriately separated inertial target are

required to-define attitude. The optimum selection of inertial

attitude references is constrained by specific mission profile.

2) Selection of attitude determination scheme: A reliable method for

obtaining these two angular measurements must be selected.

Candidate Inertial Attitude References

Many celestial targets are available as candidates for taking attitude

measurements throughout the Pioneer Venus spacecraft mission phases.

However, in order to periodically determine the spacecraft attitude, at least

two inertial references are required with a preferred angular separation of

25 to 155 deg. In addition, one inertial reference is required continuously to

provide the spacecraft a spin angle reference throughout all mission phases.

The primary candidates considered for this mission were the sun, Earth,

Venus and stars.

The mission geometry of the spacecraft relative to the sun and planets

was a primary consideration in selecting the inertial references. Figures

4-1 through 4-4 illustrate the position of the spacecraft relative to the sun,

Venus, and the Earth for the multiprobe mission and the orbiter mission.

The spacecraft nominal spin axis attitude is perpendicular to the plane of the

ecliptic.
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During the transit phase, the Earth and Venus as seen from the space-

craft vary considerably in distance, target size, and irradiance. If optical

or passive detection systems were used to obtain line of sight measurements

of the spacecraft attitude relative to these targets, the design parameter

variations would require relative complex system designs. In addition,

during many phases of the mission the Earth and Venus are nearly colinear

and the line of sight geometry is unfavorable for accurate attitude measure-

ments. For these reasons, the Earth and Venus were not considered to be

good optical targets for the Venus mission.

The sun, on the other hand, is an easy-target to detect because of

its high irradiance. In addition, it is a relatively small target and will

provide a relatively precise reference when scanned by a photovoltaic detector.

The sun is available throughout all phases of the mission except when being

eclipsed by Venus. The eclipse periods occur only for relatively short

durations of the orbiter mission. Throughout the cruise and Venus orbit

phase of the mission, the sun will be normal to the spacecraft spin axis.

Therefore, the sun has been chosen as a primary inertial reference for

attitude determination.

Another inertial reference possibility considered was use of the space-

craft communication system to provide an amplitude or frequency modulated

rf signal proportional to the pointing error. One such technique, Conscan,

has been used successfully on Pioneer Jupiter spacecraft. However, the

Conscan approach requires the spacecraft spin axis be pointing fairly near

the earth line (= 30 deg) to get adequate angular resolution. A doppler shift

detection scheme using the wide beam antenna was also considered. This

scheme requires that the antennae be offset from the spacecraft spin axis to

provide a carrier frequency modulation at spin frequency, the peak deviation

being proportional to the sine of the angle between the spin axis and the Earth

line. This scheme, then, requires the spin axis to be pointing to within 60 to

70 deg of the earth line to be effective. In addition, during combined earth

occultation and sun eclipse periods, no spin angle reference would be available

onboard the spacecraft for the science instruments. For these reasons, the rf

schemes were not chosen; however, the doppler shift approach can be used

during some phases of the mission; i. e. , probe release attitudes and some

midcourse maneuver attitudes, if the ground station is capable of detecting the

frequency modulation.

The most numerous inertial references available are the stars.

Selected stars are available as steller targets at all spacecraft attitudes

throughout all phases of the missions. Selected stars can also be used during

sun eclipse and earth occultation periods as an onboard spin angle reference.

Due to a common characteristic of similar irradiance (low) from hundreds of

detectable stars, a major problem is target discrimination. However by using

only a few of the brightest stars as targets, the star identification problem can

be resolved with ground operational procedures. A component tradeoff on use

of star sensors indicated that the solid state design using a silicon detector is

easily capable of detecting +1 silicon magnitude stars. There are approximately

25 stars brighter than +1.0 magnitude (si). A list of the 25 brightest stars

obtained from the Kollsman's Silicon Star Catalog is shown in Table 4-1. The
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TABLE 4-1. 25 BRIGHTEST SILICON STARS

BS Name R. A. DEC V SIL VAR Common Name

1) 2491 ALF CMA 103. 72 -39. 65 -1.41 -1.41 Sirius

2) 2061 V ALF ORI 88.38 -16.11 0.39 -1.39 1.1 Betelaeus

3) 2326 K ALPHA CAR 104.67 -75.72 -0.75 -0.98 Canopus

4) 5340 ALF BOO 203.77 30.76 -0.07 -0.93 Arcturus

5) 6134 V ALF SCO 249.30 - 4.48 0.91 -0.88 0.9 Antares

6) 5459 K ALPHA CEN 239. 15 -42.46 -0.28 -0.75 Rigil Kentaurus

7) 1708 ALF AUR 81.48 22. 75 0. 04 -0.45 Capella

8) 4763 K GAMMA CRU 216.41 -47.72 1.63 -0.37 Gacrux

9) 1457 ALF TAU 69.39 - 5.55 0.92 -0.35 Aldebaran

10) 7001 ALF LYR 284.96 61.74 0.03 0.03 Vega

11) 2943 ALF CMI 115.43 -16.09 0.35 0.08 Procyon

12) 1713 BET ORI 76.43 -31.19 0.16 0. 1 Rigil

13) 8636 W BET GRU 321.90 -35.33 2.10 0. 12 Beta Grus

14) 681 V CMI CET 31.10 -15.97 3.21 0.22 8.0 Mira

15) 6406 V ALF MER 255. 73 37. 34 3.13 0.22 1.0 Alpha Hercules

16) 472 K ALPHA ERI 344.78 -59.27 0.47 0.46 Achernar

17) 2990 BET GEM 110. 84 6. 59 1.14 0.51 Pollux

18) 7557 ALF AGL 301.42 29. 36 0. 73 0.61 Altair

19) 5267 K BETA CEN 233.44 -44. 01 0.62 0.66 Hadar

20) 8775 V BET PEG 359. 03 31. 12 2.49 0.69 0.9 Scheat

21) 4730 K ALPHA1 CRU 221.56 -52. 75 0. 76 0.70 Acrux

22) 337 BET AND 30. 05 25. 87 2.09 0.73 Mirach

23) 5080 V R MYA 209.03 -12. 84 4.98 0.85 7.0 (no name)

24) 3634 LAM VEL 160. 95 -55. 84 2.21 0.88 Al Suhail

25) 6217 K ALPHA TR A 260. 53 -46.00 1.92 0.98 Atria

CODE: BS - Identification number, Yale University Observatory Catalog of Bright Stars
(an asterisk denotes a star not contained in the Johnson List)

R.A. - Right Ascension (degrees, ecliptic coordinates)

DEC - Declination (degrees, ecliptic coordinates)

V - Visual magnitude

SIL - Silicon Magnitude

VAR - Magnitude Variability
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TABLE 4-Z. CANDIDATE INERTIAL ATTITUDE REFERENCES
FOR VARIOUS MISSION PHASES

Requirement

1) Attitude determination requires at least two inertial

references

2) Spin angle determination requires one inertial reference

Available for Reference

Optical RF-Earth

Mission Phase Sun Stars Conscan Doppler

Initial acquisition Yes Yes Maybe Yes

Midcourse Yes Yes No Probably

Cruise Yes Yes Yes Yes

Probes separation Yes Yes Maybe Yes

Probe bus entry Yes Yes Yes Yes

Polar orbit insertion Yes Yes No No

In orbit Yes Yes Yes Yes

Periapsis

Occultation Yes Yes No No

Eclipse No Yes Yes Yes

Both No Yes No No

Precession required.

Conclusion

1) Sun sensor provides primary reference source and easy

identification
2) Star sensor provides attitude determination and spin angle

reference for all mission phases

3) Conscan and doppler schemes require more propellant and

provide limited visibility for attitude determination
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star positions are given in terms of a right ascension angle measured

eastward from the vernal equinox (y) in the ecliptic plane and a declination

angle measured north (+) or south (-) from the ecliptic plane. The sun can

also be used to aid in the star identification procedures by appropriate spin

angle gating.

The combination of the sun and star as inertial targets provides the

most mission flexibility for attitude determination under all attitude condi-

tions. Table 4-2 illustrates this mission flexibility of the selected inertial

references by a comparative tradeoff summary of all the candidate inertial.

attitude references studies for the various mission phases.

Candidate Attitude Determinations Schemes and Sensors

Two angles are required to define the location of the spin axis in an

inertial set of coordinates. This is equivalent to the statement that the angle

between the spin axis and the spacecraft line of sight (LOS) to two appropriately

separated inertial targets be known. For example, knowledge of the sun aspect

angle (angle between spin axis and the sun LOS) and one star aspect angle

(angle between spin axis and a star LOS) is sufficient to define spin axis atti-

tude provided that the minimum sun-spacecraft-star angle is greater than

25 deg. Equivalently, only two stars are necessary providing they are within

the field of view of the spinning sensor.

A standard method of measuring the aspect angle of an inertial target

uses the so-called spin scan dual slit sensor which consists of two fan beam

fields of view. For example, one sensing plane is placed parallel to the spin

axis while the other is inclined with respect to the first. The spin angle

between the pulse generated by each of the sensing planes is a function of the

relative inclination of the planes and the aspect angle of the inertial target.

Therefore, pulse interval measurements made by dual slit sun and star sensors

are sufficient to define spin axis attitude in inertial space.

The spin axis attitude can also be determined by schemes other than

that requiring measurement of aspect angles of two inertial targets. Figure

4-5 serves to illustrate these additional methods. The spin axis is depicted

as the reference pole of a unit sphere centered at the spacecraft center of

mass. The sun LOS and two star lines of sight are shown emerging from the

sphere, with sun aspect angle = Y and a star aspect angles = X1 , X2, respec-

tively. The angle between sun and star 1 is defined as E 1 ; sun and star 2 is

defined as E 2 ; and star 1 and star 2 is defined as E 3 . These angles are known

from ephemeris data. Note first, the measurements of y and Xl, or y and X2

along with E l or E 2 define an inertial spherical triangle that uniquely locates

the spin axis attitude. This approach represents the dual slit scheme dis-

cussed above. Note further, however, that measurement of sun aspect angle,

y-, together with the spin angle between a sun pulse and a star pulse, Al or A 2 ,

also defines along with E l or E 2 an inertial spherical triangle that uniquely

determines spin axis attitude. This approach has been called the single slit

scheme in this report. With reference to the figure, equivalent sets of mea-

surements for this scheme are X1 and A 1 or k 2 or A 2 . All of these measure-

ments can be made by the same dual slit sensors previously identified with the

first approach.
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INERTIAL TARGETS

FIGURE 4-5. ATTITUDE MEASUREMENT SCHEMES
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Another scheme to define spin axis attitude consists of measuring the
two spin angles between a sun pulse and the two star pulses; i. e., Al and A 2 .
While the data pairs (Al, E l ) and (A Z , E 2 ) are insufficient to define the two

spherical triangles defined by sun- spin axis- star 1 and sun- spin axis- star 2,

introduction of the constraint triangle, defined by sun- star 1- star 2, will

uniquely define spin axis attitude. This approach is called the mapping scheme

Once again, all required measurements can be made by the same dual slit star

sensors used for the other two approaches.

The choice of dual slit sun and star sensors provides a triple option for

spin axis attitude determination. This capability is significant for the Pioneer

Venus mission when one considers the various spin axis attitudes that will be

experienced and the restricted flexibility available with a limited number of

stars. For example, since each scheme has an error sensitivity problem for

different sun- star- spin axis geometries, one scheme (dual slit) might encounter

a geometry problem at a given attitude (spin axis, sun and star LOS coplanar),
while another scheme (single slit) would offer superior performance and still

only require a single measurement on the same star. Another significant

advantage of the triple option is its redundancy features. The dual slit sun

sensor can be made redundant for a relatively insigificant increase in cost and

weight. With a sun aspect angle always available and each slit of a dual slit

star sensor redundant to the other, only a single star measurement is required

for the single slit scheme. Therefore, a single slit scheme has been empha-

sized in the analysis since it provides the basis of the redundancy argument

for a single star sensor (minimum cost design) and requires only one star

measur ement.

The attitude sensor configuration selected for Pioneer Venus consists

of a redundant dual slit sun sensor and a single dual slit star sensor. Spin

axis attitude is nominally determined by anyone of three schemes: dual slit

(sun and star aspect angle measurements), single slit (sun aspect and sun-star

spin angle measurements), and mapping (multiple sun-star angle measurements).

Complete redundancy is obtained by only requiring the availability of one of the

two star sensor slits. Table 4-3 summarizes the rationale for this selection.

4.2 ATTITUDE/AV/SPIN SPEED CONTROL

The fundamental trades associated with attitude/AV/spin speed control

were:

1) Thruster arrangement: A combination of thrusters that can exe-

cute all required maneuvers in a redundant manner must be
defined.

2) Spin rate and thruster parameters: Spin rate thrust level and

moments arms must be consistent with allowable attitude dis-

turbances and maneuver time constraints.

3) Nutation damping: The nutation damper must provide asymptotic
stability over a broad spin speed range.
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TABLE 4-3. ATTITUDE DETERMINATION RATIONALE SUMMARY

Attitude sensor configuration. Redundant dual slit sun sensor,
single dual slit star sensor, each
slit independent

Features

Mission flexibility: Triple attitude determination option

1) Dual slit scheme - measure aspect angles
of two inertial targets

2) Single slit scheme - measure aspect angle
of one inertial target and spin angle between
two inertial targets

3) Mapping scheme - measure two spin angles
between three inertial targets

Mission redundancy. Complete mission attitude determi-
nation in the event of a sun sensor
failure and/or a single star sensor
slit failure.
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Thruster Arrangement

Any combination of jets schemes that satisfies all attitude/AV/spin

speed control requirements can be analyzed by superposition of fundamental

jets, each performing specific task(s ), on a spinning vehicle. The most

generally known schemes use axial jets, radial jets, and spin jets.

The axial jet is a thruster radially offset from the spin axis that

delivers its linear impulse parallel to the spin axis. Continuous firing of

an axial jet continuously generates a AV nearly parallel to the initial inertial

spin axis direction. Since the jet is offset from the spin axis, an angular

torque also results. This effect can be minimized in two ways: spinning the

vehicle faster to render it more resistent to angular motion; locating another

axial jet radially opposite the first one so that when both are fired together,

a pure linear impulse is nominally imparted. Pulsing an axial jet at spin

frequency generates a torque fixed in an inertial plane and thus a precession

of the angular momentum vector in that same plane. Since the jet also im-

parts a linear impulse parallel to this plane, an inertial AV component

will also be introduced. This latter effect can be minimized by locating
another axial jet that thrusts in the opposite direction radially opposite the

first one so that when both are pulsed together, a pure angular impulse is

nominally imparted. Note that a trio of axial jets is required to generate a

pure force parallel to the spin axis and a pure couple perpendicular to the

spin axis. If a pure force antiparallel to the spin axis is also required, a

quartet is necessary. Without any spin axis attitude constraints, only one

axial jet is required to deliver a AV in an arbitrary direction; coupling between

precession and AV could be calibrated into the maneuver. Without any spin

axis constraints, only two axial jets (radially opposite, thrust antiparallel)

are required to redundantly deliver a AV in an aribtrary direction. This

scheme also has the advantages of providing a pure couple mode for precession

and requiring a maximum precession of 90 deg from the initial to the required

(but arbitrary) AV attitude.

The radial jet is offset from the spin axis so that delivers its thrust

through the center of mass and perpendicular to the spin axis. Pulsing a

radial jet at spin frequency generates a pure linear impulse perpendicular

to the spin axis. The radial jet has no capability to precess the spin axis

or to change spin speed. However, a combination of one axial jet and one jet

has the capability of delivering a AV in an arbitrary dii-ection in an inertial

hemisphere whose axis of revolution is some arbitrary spin axis attitude.

If one adds another axial jet thrusting antiparallel to the first, the capability
is extended to the entire inertial sphere. The power of radial pulse thrusting

is that it permits AV maneuvers without reorientation of the spacecraft.

The spin jet is a thruster radially offset from the spin axis that de-

livers its linear impulse in the plane perpendicular to the spin axis containing

the center of mass and in the direction perpendicular to the radius. Firing

a spin jet continuously for an integral number of spacecraft revolutions gene-
rates a pure couple about the spin axis and thus spin speed change. The spin

jet has no capability to precess the spin axis. A AV component perpendicular

to the spin axis is obtained at the expense of spin speed change. One spin jet

each is required for spinup and spindown. Note that if the two spin jets are

radially opposite and thrust parallel to one another, pulsing the two together
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at spin frequency will generate a pure linear impulse perpendicular to the

spin axis as do radial jets. A combination of such a "radial" jet pair with an

axial jet pair (radially opposite, thrust antiparallel) has the capability of:

1) delivering a AV in an arbitrary direction for any spin axis attitude, and

2) spin speed increase or decrease. This combination is called the "Pioneer

Quartet". Since attitude/AV/spin speed control are inherently a part of the

Pioneer Venus mission, this quartet represents a point of departure for a

thruster arrangement that can satisfy mission requirements with suitable

redundancy and commonality for both missions.

The quartet offers three standard methods of midcourse maneuver

execution illustrated in Figure 4-6: the axial jet mode, the radial jet mode,

and the vector mode. The axial jet mode (Method 1) can be used when the

required AV direction is never closer than 15 deg to the sunline. This mode

requires a maximum 95 deg open loop rhumb line precession to the required

attitude, an axial jet continuous burn and a precession back to the cruise

attitude. The precession is nominally executed with the axial jet couple. For

large maneuvers such as the first midcourse, this mode requires minimum

propellant (continuous I ) and least maneuver time. The radial jet mode

(Method 2) can be used when the required AV direction is within 15 deg of the

sunline and the spin axis is within 15 deg of normal to the ecliptic. This

mode requires a maximum 15 deg precession to an attitude perpendicular to

the required AV direction, a radial jet pair pulsed, and return to the cruise

attitude. This mode can also be used to deliver a AV in an arbitrary direction

by precessing (with the axial jet(s)) a maximum of 90 deg around the sunline

and pulsing at the appropriate phase of the spin cycle. However, for large

maneuvers, the radial jet pair can induce significant secular precession and

spin speed changes and thus the maneuver would have to be monitored and

probably partitioned. For attitudes within 15 deg of ecliptic normal, the

attitude is readily assessed. This mode requires more propellant (pulsed

Isp) and more maneuver time (pulsed). The vector mode (Method 3) requires

no change in attitude to deliver a AV in an arbitrary direction (fundamental

property of the quartet). Axial jet continuous thrust is vectored with radial

jet pulsed thrust. The vector mode is the choice for small AV corrections

while the axial jet mode is the choice for large AV corrections.

In the event one axial jet fails, the axial jet mode is degraded but not

lost. The operative axial jet executes a maximum precession of 180 deg as

well as the required AV. Failure of one axial jet limits the vector mode to

an inertial hemisphere. In the event one radial jet fails, either spinup or

spindown capability is lost and the radial jet mode has severe spin-radial

AV coupling. These effects could sacrifice the first midcourse maneuver,

required probe spin rates, orbit insertion and orbital operations at 5 rpm.

For redundancy considerations, an additional radial jet pair should be added

to the quartet. Then, two radial jet pairs displaced 180 deg with respect to

one another about the spin axis provide redundant spin speed control and

radial AV capability. The two axial jets provide redundant attitude control and

axial AV capability. This sextet represents the first iteration on the "Pioneer

Quartet" considering the impact of single jet failure on mission success.
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After large probe separation, the spacecraft center of mass shifts
significantly (=15 cm). Since small probe targeting requires AV perpendic-
ular to the spin axis, one of the probe bus radial jet pairs (cruise backup)
should thrust through this center of mass. This strategy also allows the
"radial" jet pairs to exhibit additional precession modes during the mission.

One of the axial jets easily delivers the AV required for probe bus
retardation. In the event that this jet fails, the spin axis can be precessed
and a radial jet pair pulsed appropriately.

The axial jet that thrusts parallel to the orbit insertion motor thrust
easily executes any preburn maneuver required. If this jet failed, thermal
constraints limit the duration of the preburn to be executed with a backup jet(s).
This is one of several considerations that lead to the addition of a third axial jet
on the orbiter. Compensation for solar and drag orbital perturbations only
require axial thrust parallel to the orbit insertion motor thrust. The solar
effect increases periapsis so that an impulse opposite the orbital velocity
vector near apoapsis is required. The drag effect decreases apoapsis so that
impulse in the same direction as the orbital velocity vector near periapsis
is required. Since the orbital velocity vectors at apoapsis and periapsis are
antiparallel, this implies thrust in the same -inertial direction is required. For
the baseline spacecraft this is always along the orbit insertion motor thrust
direction. Thus, a single axial thruster comprises nearly the total work force
for orbital operations. Corrections will be required at least weekly. In the
event this thruster fails, the spacecraft must be precessed at least 360 deg
per week, introducing operational difficulty as well as a weight penalty.
Addition of a seventh jet provides redundancy for orbital operations as well as
several other desirable features; i.e., another attitude control mode; redun-
dancy for the preburn maneuver; and two additional axial AV modes, one
of which allows a balanced thrust to execute orbital corrections at 5 rpm with
minimal attitude perturbations. The latter feature is significant since a
single axial jet must be pulsed in a 180 deg bang-bang mode when used for
orbital corrections at 5 rpm. This mode consists of pulsing the jet at twice
spin frequency to accumulate AV and limit the attitude movement (precession
and nutation) when angular momentum is low. The jet effectively bangs the
angular momentum vector each one half spin period back to its initial attitude.

As a result of these tradeoffs, a "Pioneer Sextet" was chosen for the
probe mission and an additional axial jet was added for the orbiter mission to
form the "Pioneer Septet. " The latter is illustrated in Figure 4-7, with jet
7A removed for the probe mission. The fundamental differences between
these arrangements and the basic quartet are based on redundancy arguments.

Spin Rate Profile and Thruster Parameters

The spin rate profile for certain key mission events is fairly well
dictated. However, spin rates during cruise and maneuvers are open to some
tradeoffs involving thruster parameters. For the thruster arrangement
arrived at above, the thrust level and jet moment arms are parameters to be
selected. The vehicle configuration constraints all thrusters to be located
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radially at the periphery of the 214 cm diameter cylinder. Thus, the axial

jet moment arm is approximately 100 cm (40 in. ). The radial jet moment

arm can be no greater than 50 cm (20 in. ) because the radial jet thrust must

be > 60 deg from the tangent to the cylinder to avoid a plume impingement

problem. The moment arm is chosen to be this maximum value in order to

minimize the propellant required for spin speed control. With thruster

geometry defined, the only parameter remaining for the tradeoff is thrust

level.

The choice of the axial jet mode as nominal for a large initial mid-

course as in the Thor/Delta is based on the observations that it minimizes

required propellant and maneuver time and can be executed open loop if
necessary. For spin frequency pulsing, the precession rate is proportional

to the thrust and inversely proportional to the spin speed. The rate of AV

delivery is also proportional to the thrust. The resistance to attitude motion

during continuous burn is proportional to the thrust and inversely proportional

to the spin speed squared. Therefore, for equal spin stiffness, a 22 N (5 Ib)

thruster requires 2. 2 times the spin speed as a 4. 5 N (1 lb) thruster. The

precession rate for the 22 N thruster is 2. 3 times as fast at the higher spin
speed. The rate of AV delivery is 5 times as fast for the first midcourse

maneuver. At 60 rpm, the 22 N thruster would require =8 min to precess

to the required AV attitude, 20 min to deliver the maximum AV (72 m/sec)

and = 8 min to return to cruise attitude. This implies a minimum maneuver

time of 36 min. The corresponding minimum maneuver time for the 4. 5 N

thruster at 27 rpm is 137 min. An attitude determination is desirable prior
to the actual AV delivery, so that some additional maneuver time is desirable.

The 22 N thruster can reasonably satisfy the 1 h maneuver time allowed,
while the 4. 5 N thruster does not come close. If the first midcourse were

performed with the radial jet mode at these spin rates, the larger thruster

would require a minimum of 80 min, while the smaller would require a mini-
mum of 185 min. If a large preburn for the orbiter were required, the

smaller thruster could use a significant portion of the 2 h allowed at that

attitude. The smaller thruster does have a comparative advantage for

orbital operations at 5 rpm. The attitude perturbation due to a mismatched

pair or single axial jet during a AV correction is reduced by a factor of five.

However, the mismatch between a pair of larger axial thrusters can be

limited to an acceptable level by a selection process. In addition, the dis-

turbance dueto a single larger axial thruster can be limited by the on-time

in the 180 deg bang-bang mode. An advantage accruing to the larger thruster

based on Hughes experience is that thrust misalignment is smaller (= 0. 05

deg compared to 0. 2 deg). Since both thrusters are developed and use the

same solenoid valve, the cost and weight differences are minimal. The

overall selection of the Thor/Delta of the 22 N thruster has been made based

on its minimal maneuver time and adequate pulse performance at 5 rpm.

The spin speed during attitude and AV maneuvers must generate suffi-

cient spin "stiffness" to limit cross-coupling effects on maneuver errors.

In general, nutation induced during spin axis precession is inversely propor-

tional to spin speed; thrust pointing error and nutation induced by a continuous

axis jet AV maneuver is inversely proportional to spin spin speed squared;

precession induced by a pulsed radial jet AV maneuver is inversley proportional
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to spin speed; and propellant weight required for precession maneuvers is

proportional to spin speed. Therefore, the spin speed should be set as low

as possible to save propellant weight consistent with gyroscopic stiffness

requirements.

The spin speed selected for probe midcourse maneuvers using either

axial or radial jets is 60 rpm. The probe bus is despun to 30 rpm for large

probe separation reorientation to reduce propellant consumption. The spin

speed selected for the first orbiter midcourse maneuver is dependent on which

jet mode is used. Since the orbiter bus has a balanced pair of axial thrusters

on the retro motor end of the spacecraft, thrust pointing error and nutation

induced by a continuous burn of this axial jet pair is small. With nutation in-

duced during the spin axis precession tolerable and required precession pro-

pellant halved at 30 rpm, the orbiter can satisfactorily execute the first

midcourse at 30 rpm with this axial jet pair. If the orbiter requires a large

midcourse with the axial jet on the other end of the spacecraft or with the

radial jets, the maneuver will be executed in the same manner as the probe

bus; i. e., at the intial cruise spin speed of 60 rpm. Since subsequent man-

euvers are much smaller, their execution with the axial and/or radial jet

mode (discussed below) at 30 rpm for the orbiter bus is acceptable. However,

the axial jet mode requiring the single thruster on the top end of the space-

craft would be a 180 deg bang-bang mode. In summary, then, the orbiter will

continue to cruise at 30 rpm if it is despun to this speed for the first mid-

course. If it is not despun prior to the initial maneuver, it will be despun to

30 rpm after the maneuver and continue to cruise at this value. Since orbit

insertion will take place at 30 rpm and orbital operations at 5 rpm, the mech-

anically despun antenna need only operate over a spin speed range of 5 to 30

rpm. The antenna will be despun during the remainder of cruise using the sun

as a despin reference.

Nutation Damping

Since both the probe bus and orbiter are passively stable, nutation

damping is most easily achieved with a passive device. The damper is required

to operate over a broad spin speed range. Such a damper is provided by a

passive mercury tube nutation damper of the design type utilized on Syncom,

ATS, and Telesat. Extensive performance analyses and testing of mercury tube

nutation dampers have been performed at Hughes during these programs and

techniques have been developed to accurately predict nutation damping time

constants for the various mission requirements and vehicle characteristics.

A common damper can be utilized for both the probe and orbiter missions.
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5. SUBSYSTEM DESCRIPTION (THOR/DELTA BASELINE)

5.1 FUNCTIONAL DESCRIPTION

The attitude control and mechanisms subsystem (ACMS) uses
conventional spin stabilized spacecraft hardware and functional mechaniza-
tions to provide a simple and reliable design. The elements of the attitude
control functions are shown in Figure 5-1. Subsystem analyses are given in
Appendices A and B and detailed hardware description is given in Appendix C.

All elements of the ACS are mounted on the spinning rotor (see Figure
5-2) including the mercury nutation damper which provides the primary
source of energy dissipation for nutational stability. The damper is a simple,
space-proven passive mercury tube device partially filled for maximum damp-
ing effectiveness over the required mission profiles.

The attitude data processor (ADP) contains all the logic and signal
processing to determine time intervals between sun and star sensor output
pulses for transmission to the ground station for computation of spacecraft
attitude. For on-board automatic operations, azimuth spin pulses are genera-
ted for spin period synchronization of star gates, reaction jet firing start sig-
nal, probe release timing and science instrument references. The jet control
electronics contains all the logic and timing circuits to automatically operate
the solenoid drivers for control of the propulsion system jet valves upon
receipt of ground commands.

The bearing and power transfer assembly (BAPTA) provides the elec-
trical and mechanical interface between the two sections of the orbiter space-
craft and contains despin motor and shaft angle encoder. The BAPTA uses
a brush dc torque motor to generate the required torque to control the plat-
form dynamics in azimuth for maintaining the high gain antenna pointing at
the Earth LOS.

The motor torque commands to overcome friction and orient the
orbiter high gain antenna toward the Earth line of sight (LOS) are derived in
the despin control electronic (DCE) portion of the ACMS. The commands
are based on pulse data from the shaft angle encoder (SAE), spin synchronous
clock pulses derived from either sun or star sensor outputs and ground com-
mandable delays. The DCE provides the required logic for both automatic
antenna pointing acquisition and tracking.
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The principle mechanisms are a bicone antenna deployment mechanism;

a magnetometer sensor deployment mechanism; thermal control louvers and

mechanical pin pullers. The bicone antenna deployment mechanism is a

telescopic mast for extending the bicone antenna along the spin axis following
separation of the spacecraft from the Thor/Delta launch vehicle. The magne-
tometer sensor deployment mechanism is a 107 cm (42 in.) boom which is

extended radially following separation from the launch vehicle. The thermal

control louvers are bimetallic actuated devices used to control the tempera-

ture of the spacecraft electronic equipment. The mechanical pin pulles are

squib actuated devices used for the release of spacecraft mechanisms.

5.2 ATTITUDE DETERMINATION SYSTEM DESIGN

The recommended attitude determination scheme for the Pioneer Venus

mission measures the sun and selected stars aspect angles and spin azimuth

angles relative to spacecraft coordinates. The measured data is then trans-

mitted to the earth for processing and attitude calculations using Euler angle

relationships by the ground control center. A functional block diagram of the

proposed system is shown on Figure 5-3. As can be ssen the spacecraft

functions have been minimized to enhance total system reliability, reduce

spacecraft weight and minimize systems development costs.

Sensors

The proposed sensor configuration uses three spin scan sun sensors

and one spin scan star sensor as the inertial reference sensors. Since the sun

can be detected unambiguously, the sun is used as the primary celestial refer-

ence. In addition, the sun is used as an aid in selecting the desired stars for

attitude determination. To provide attitude measurements at random space-
craft attitudes the sun sensors will be aligned relative to the spacecraft spin
axis such that one sensor scans the upper hemisphere, one sensor scans the

lower hemisphere, and one sensor scans the midrange of sun aspect angles.
The star sensor will be aligned to scan an area in the upper spacecraft hemi-

sphere to provide the best star coverage when the spacecraft plus spin axis

is pointing toward the south elliptic pole.

Each sun sensor is a dual slit fan shaped field of view (FOV) sensor.

Each sensor has a Y slit which is aligned parallel to the spin axis and a ~
slit which is canted relative to the i slit, as illustrated below.

2z

Elevation

Sun Path

Azimuth

4 Pulse

2P u l s e
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A pulse from each slit will be generated each revolution when the sun

passes through the slit FOV. The sun apsect angle relative to the spin axis

is determined by measuring the time interval between pulses.

The star sensor is a dual slit solid state detector with a fan shaped

FOV. The sensor has a Lp* slit aligned parallel to the spin axis and a " slit

which is canted relative to the L;* slit (see below). Since normally more than

Elevation

2

Star Path

2 Pulse I I - Azimith

J*Pulse

Sun Pulse

one star will appear in the FOV each revolution, angle and intensity discri-

mination will be required in order to obtain valid data from a known star.

A commandable detection threshold setting will be used to provide amplitude

discrimination against background noise and dim stars. A star gate command-

able in spin angle from the sun L pulse will be used to angle discriminate

against other bright stars. The star intensity will be measured and tele-

metered to the ground. Time interval measurements from the sun k pulse

to star L:P pulse and the star LP pulse will also be made. The star aspect

angle relative to the spin axis is determined by the time difference between

the two measurements. The time interval measurement is made from the sun

sensor t pulse to permit the use of only one star slit (i*:" or i~') for attitude

determination when favorable sun-star geometry exists. The cant angle of

the L slit is negative to provide better single slit attitude determination

accuracy during some periods of the mission.

Attitude Data Processor

The sun and star sensor pulses are processed by the attitude data

processor (ADP) electronics unit. A block diagram of the unit is shown in

Figure 5-4. The unit will have two data modes. When the sun is selected as

the primary inertial reference, the unit will be operating in the sun mode.

When the sun is not available (sun within 15 deg of spin axis or eclipsed by

Venus) a star will be selected as the primary inertial reference and the unit

will be operating in the star mode.
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For the sun mode of operation one of the three sun sensors will be

selected by ground command depending upon the approximate sun aspect angle.

The time interval between 4 and 2 pulses will be measured to obtain spin

period and sun aspect data. The 4 pulses will also be used as a spin-angle

reference input to a phase lock loop (PLL). The PLL will quantize a spin

period into 2X sectors to provide on-board spin angle reference singals with

respect to the selected inertial reference. A ground commanded angle delay

will be used to gate the selected star pulses from the L4: or 0- slits for time

interval measurements (see Figure 5-5). A star map of intensity versus

angle can be made by moving the gate slowly through 360 deg. Following

generation of the star map, the best star (based on the signal-to-noise and

geometry) will be selected for making attitude determination measurements.

One time interval measurement can be made during a spin period and the data

stored until readout by the data subsystem. In the sun mode the following

measurements can be made:

1) 4 - 4 spin period

2) 4- 2; sun elevation angle

3) 4- or 4J; sun-star or star elevation angle

4) 4- MIP; despun antenna azimuth angle (orbiter only)

Because the slow data rate of the communications system the time

interval measurements will be selected by ground command in pairs. This

will provide the operational flexibility to obtain the most number of samples
of desired data in the least amount of time; i. e., one can select, for example,

- 2 and i - 4'* and obtain a measurement of each time interval every other

spin period. Therefore, a minimum of two spin periods will be required to

obtain one pair of attitude measurements. The time for a single attitude

measurement as a function of spin speed is as shown in Figure 5-6 assuming

no telemetry data rate limitations.

To obtain a complete set of attitude measurements a minimum of 25

data points will be taken of each required parameter. A typical data collec-

tion sequence would be as follows:

Step Measurement Samples Required Time at 5 rpm

1 - ; 4- 4' 25 10 min

2 2- 2; 4 - 25 10 min

During the star mode of operation, a star will be used as a selected

inertial reference (SIR) for the PLL by enabling a SIR star gate -355 deg

following the SIR pulse from the PLL. The PLL will lock on and track the

star pulse occurring in the SIR star gate. The ground commanded star

gate angle delay will be used to select star pulses from either the * or 4

slit for the time interval measurements relative to the SIR star being traced

by the PLL (see Figure 5-5). To change lock of the SIR star being tracked
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by the PLL the commanded star gate angle delay will be positioned on the
desired L* pulse; then a star advance ground command will be intiated to
reset the PLL phase error to zero when the next 4* pulse occurs in the
delayed star gate, thus resetting the SIR star gate and the PLL to track the
new selected star. One time interval measurement can be made during a spin

period, and the data stored until readout by the data subsystem. In the star
mode the following measurements can be made:

1) P*l - 1: spin period (same star)

2) t1 - 2: spin azimuth (two stars)

3) L*l - 421 or 2: star elevation angle

4) +J1 - MIP: despin antenna azimuth angle (orbiter only)

To determine attitude in star mode, two stars separated in azimuth

90 + 65 deg should be used. One star would be selected as the SIR for locking
the PLL as described previously. The star sensor threshold must be set

using ground commands to allow at least two stars to be detected each revolu-
tion. The commanded star gate delay will be positioned by ground commands

to obtain the desired star aspect data. A typical data collection sequence for
this operation would be as follows:

Step Measurements Samples Required Time at 5 rpm

1 PI - l; 0-1- '-2 25 10 min

2 q*l - -1; *i - 1 25 5 min

3 I P - i2; +-l - t*2 25 5 min

Data Subsystem

The data subsystem will interrogate the ADP periodically to obtain the
measured attitude data for transmission to the ground. The frequency of
sampling will depend upon the available bit rate through the communication
subsystem and the selected data mode. The attitude data words will be trans-

mitted when either of the two attitude control system (ACS) telemetry data
frames have been selected by ground command. One frame of ACS data will

contain housekeeping data and will include at least one attitude data measure-
ment sample per frame. The other frame of ACS data will contain trajectory
correction maneuver (TCM) data and will include at least four attitude data

measurement samples per frame. Based upon preliminary spacecraft

telemetry data format assignments the minimum attitude data rates will be

as shown in Table 5-1 for the indicated telemetry modes. Each data format

is comprised of 16 frames of data. Each frame of data is 256 bits. Each

frame contains 32 eight-bit words. A minimum of three words is required

for each attitude measurement; i.e., 24 bits.
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TABLE 5-1. MINIMUM EXPECTED ATTITUDE DATA RATE

Number of Bit ACS Frame Attitude Attitude
ACS Frames Rate, Rate, Samples per Data Rate

TM Data Mode per Format bps sec/frame ACS Frame sec/sample

Engineering 5/16 16 51.2 1 51. 2

TCM 8/16 8 64. 0 4 16.0

Cruise science 1/16 16 256.0 1 256. O0

Probe encounter 1/16 1024 4. 0 1 4. 0
science

Orbiter periapsis 1/16 128 32.0 1 32. O0
science

Orbiter apoapsis 2/16 64 32.0 1 32. O0
science

The data system has the operational flexibility of serially formatting
16 frames of data. The serial bit stream telemetry format can be altered by
ground command to optimize the desired sample rate. The number of ACS
data frames per 16 frames of spacecraft data is shown in Table 5-1, along
with the lowest expected telemetry bit rate, the nominal ACS frame rate,
the attitude samples per ACS data frame, and the resulting average attitude
data rate. During most phases of the mission, the bit rate will be twice that
indicated, which means the time between data samples will be one/half (1/2)
that indicated in the table.

Communication System

The one-way communication time between the spacecraft and earth has

a significant effect on the operational time required to perform the attitude
determination. The time to command the star gate angle from the ground
station will induce a two-way communications time delay in order to obtain
the star aspect angle data for attitude determination. Figure 3-1 shows
these communications delays as a function of days from launch and in orbit.
Because of the long communication time, making an attitude determination
verification in real time while performing attitude and AV spacecraft maneu-
vers, will only be possible through the first midcourse correction.

Ground Station Data Processing

The raw telemetry data will be decoded at the mission operations
center. The attitude measurement data will be converted to engineering units
for real time display and quick look analysis by the operators. Using the
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real time data the operator will command the star sensor threshold setting
and star gate angle delays to obtain the desired attitude data measurement

necessary to perform a valid attitude determination.

The attitude determination process involves several consecutive events:

configuration of sensors and data handling subsystem for data transmission;

propagation delay; accumulation of required data; quick look at the data; com-

putation of spin rate, attitude and biases; evaluation of solution; and trans-

mission of attitude to maneuver programs. As an example of the time re-

quired for these events, consider an attitude determination at probe encounter

prior to large probe separation. The telemetry subsystem is in the TCM

mode with 8 bps provided by wide beam omni during and after the attitude

maneuver. Attitude data at the final attitude is intially received some 5 min

after the maneuver. One datum point is transmitted every 16 sec. Allowing

25 samples of each of the four data types ( , 4J 2 , 4'P,* ), approximately

30 min is required for accumulation of data. An additional 30 min is allocated

to verify quality of the data and process the data through the attitude deter-

mination software. An evaluation of the solution obtained consumes 30 min

more, thus, a minimum of 1.6 h is required. In the event data quality is bad,

this sequence is delayed by the time required to recognize bad data, analyze

why, initiate a solution (star gate or magnitude change), transmit commands

to the spacecraft and receive good telemetry data. This delay has been

estimated to be 1 h. Therefore, a realistic time allocation for an attitude

determination operation is z2. 5 h.

Attitude Determination Software Design

A functional block diagram of the Pioneer Venus attitude determination

software is illustrated in Figure 5-7. Time interval measurement data

generated on board by the dual slit sun and star sensors are transmitted to

the ground via the attitude data processor and data handling subsystem. The

ground software processes spin speed (sun sensor L4or star sensor *: Lp*)
and several types of attitude data: sun angle (sun sensor 2a), star angle(s)

(star sensor 4 * LP* 2 ), spin angle(s) between sun and star(s) line of sight

.(sun-star sensors , I'C-2). Star identification is assisted by magnitude

and gating information provided by telemetry.

The data is initially processed through an editing routine where

excessively noisy data of each type are sequentially culled on the basis of

excessive deviation from the running mean of that data type. The output of

the edit routine is in blocks of smoothed data corresponding to the n data

types. Each block of data (containing an arbitrary number of points) repre-

sents a set of repeated measurements of an observable over a short interval

of time. These sets of measurements on n observables are used with an

optimal linear estimator to obtain the state vector of interest; i.e., the vector

composed of the two Euler angles defining spin axis attitude and n biases

corresponding to the n data types. The technique can be summarized as

follows.

An initial estimate of the state vector is made and a set of values

(corresponding in number to the measurements made) is computed for each

observable. Dual slit sensor equations are used for the sun and star angle
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data types while single slit sensor equations are used for the sun-star spin

angle data type. A vector of residuals is formed by taking the difference

between the observed and computed values for each datum point in the n

blocks. The linear estimator is then used (together with numerical differen-

tiation) to define a differential correction in the state vector. The relative

weights of the various data types can be chosen on the basis of block

variances and inertial geometry. The new state vector is then used to

recompute a set of values for each observable. The vector of residuals is

reformed by taking the difference between the first and second computed

values for each datum point. The root-sum-square (rss) of the residuals

is compared to a selected value to ascertain convergence (acceptable

minimization of the rss of residuals).

If convergence has not taken place, the vector of residuals is used in

the filter to define a second differential correction. The process is repeated

until convergence takes place. The output of the software, then, is an optimal

estimate of spin axis attitude and biases together with their standard deviation.

In addition to this standard attitude determination software, several

additional tools will be available for real time operations. For example,

graphs of L42 versus tp* with the two Euler angles as parameters enable

one to quickly define attitude from telemetry data. Similarly, consecutive

pairs of 4z2 and J"* data can be transmitted in real time to a small computer

to yield a running point solution of attitude; this is useful, for example, in

defining instantaneous attitude during a large precession maneuver. These

graphical and point solutions provide a quick-look capability which comple-
ments the sophisticated software capability.

5.3 ATTITUDE/AV/SPIN SPEED CONTROL SYSTEM DESIGN

The recommended attitude/AV/spin speed control scheme for the

Pioneer Venus mission uses an optimized combination of axial and radial

thrusters to accomplish all required maneuvers in a redundant manner.

Maneuver commands are computed on earth, transmitted, stored onboard,

and initiated by the command memory. The command distribution logic in

the attitude data processing unit receives the commands from the command

subsystem and generates the proper signals to enable their distribution to the

jet control electronics. The latter then generates low level logic signals to

the solenoid driver unit, which then provides drive power for the reaction

control jets.

A mercury tube damper will provide damping of nutational transients

induced by maneuvers. The damper shall be broadly tuned to operate over a

spin speed range of 5 to 100 rpm.

Thruster Configuration

The recommended thruster arrangement is illustrated in Figure 5-8

and the redundant control modes are listed in Table 5-2. Four radial thrust-

ers are placed on both the probe bus and orbiter as shown to provide
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TABLE 5-2. JET CONTROL MODES

Redundant Jet Control Modes
Nominal

Maneuver Orbiter (Jets 1 to 7), Probe (Jets I to 6)

Spin control

Spinup Jet IR continuous

Jet 3R continuous

Spindown Jet ZR continuous

Jet 4R continuous

Radial AV Jets IR and ZR pulsed simultaneously
at spin frequency

Jets 3R and 4R pulsed simultaneously
at spin frequency

Axial AV Jet 5A continuous

Jet 6A continuous

Jet 5A pulsed at twice spin frequency

Jet 6A pulsed at twice spin frequency

Jet 7A continuous

Jets 6A and 7A continuous

Jet 7A pulsed simultaneously at twice

spin frequency

Attitude Jets IR and 2R pulsed simultaneously
at. spin frequency

Jets 3R and 4R pulsed simultaneously
at spin frequency

Jets 5A and 6A pulsed simultaneously
at spin frequency

Jet 5A pulsed at spin frequency

Jet 6A pulsed at spin frequency

Jet 7A pulsed at spin

frequency
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redundant spinup or spindown (one thruster fired continuously); redundant
AV perpendicular to the spin axis (one pair of thrusters pulsed simultan-
eously): and backup attitude trim (one pair of thrusters pulsed). Axial
thrusters are placed on both the probe bus and orbiter as shown (two on the
probe bus, three on the orbiter) to provide redundant attitude precession
(single or diagonal pair of thrusters pulsed); redundant AV parallel to the spin
axis (single thruster fired continuously; and for the orbiter only, redundant
AV along the plus spin axis (single thruster pulsed at twice the spin frequency
or pair fired continuously). The salient thruster characteristics are: thrust
range of 29 (6.5 lb) to 11 (2.5 lb) N specific impulse range of 230 to 200 sec;
and pulse widths of 30 and 117 ms. The detailed thruster characteristics
are contained in the propulsion subsystem final report (Volume 10).

Jet Control Electronics

A block diagram of the jet control electronics (JCE) is illustrated in
Figure 5-9. The jet control electronics has the following functions: jet
select and firing control, start angle and pulse width selection; enable and
countdown control. All jet control modes are listed in Table 5-2.

The jet selection logic will enable by ground command any selected
combination of the three axial (two axial on the probe) and four radial jets for
a maneuver. The ground command selects whether the jets are pulse fired
from the angle logic or continuously fired for a commanded time. The jets
can be fired at the commanded delay angle 8 or at 8 and e + 180 deg when
twice spin frequency pulsing is required.

The angle logic produces firing pulses 30 or 117 ms wide at the fire
angle generated by the delay generator. The pulse width is selected by
ground command.

The enable logic starts the firing duration counter and enables the
appropriate jet firing logic. The enable logic also switches power to the
power stage once the JCE unit has been energized. Power is turned on only
by a JCE ON pulse command. Power is turned off by a JCE OFF pulse com-
mand, a PLL loss of lock signal or completion of the firing sequence. The
enable logic is set to the disabled state at power turn on and can only be
enabled by a JCE start pulse command.

The countdown is a 12-bit counter which counts either 0.5 sec clock
time pulses or the number of 8 pulses fired. The counter is preset with a
number representing the desired number of pulses fired or the desired
length of time. The counter is started by a star pulse command and ends
when the full count has been reached. A loss of PLL lock will also stop the
execution of a maneuver in progress.

5.4 HIGH GAIN ANTENNA DESPIN CONTROL SYSTEM DESIGN

The despin control system functions as a closed-loop autonomously
operating control system which orients the antenna towards the earth line of
sight while the rotor spins about an axis normal to the ecliptic plane. With
reference to Figure 5-10 the motor torque commands to orient the platform
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are generated by the despin control electronics based on the selected inertial

reference sensor (sun or star) and the bearing and power transfer assembly

(BAPTA) master index pulses, and on command inputs. Ground commands

provide control of the DCE modes and inertial antenna pointing. All active

elements of the despin control are on the spinning rotor. Operation of the

despin control is illustrated in Figure 5-11. Four control loops are used:

1) position, 2) rate, 3) friction compensation, and 4) command control. The

friction torque compensation includes an integrator stage to null offsets

biases caused'by bearing friction torque and motor back-EMF. Command

control of motor torque is provided for maximum flexibility; e.g., integrator

failure (no output or saturation).

The derivation of a true position signal is the most complex function

performed by the despin control. This process is illustrated in Figure 5-12

for one complete revolution of the spacecraft spinning section. The series of

configuration drawings assumes a null condition with the payload antenna

pointing towards the earth line of sight. The error signal is formed through

a measurement of time between the occurrence of a phase-shifted sun or star

sensor pulse and the master index pulse. The master index pulse generator

which is aligned to the antenna boreseight will generate a pulse when the

rotor mounted detector sweeps past the reference position. The phase-shifted

sensor pulse is obtained by delaying the phase lock loop (PLL) selected iner-

tial reference pulse (fs), generated by the attitude data processor unit, by an

angle commandable from ground. This measurement is obtained once per spin

period and is referred to as the coarse position error signal. At very low

spin speeds, the spin period becomes excessively long and positionupdate infor-

mation too infrequent for accurate antenna pointing. Therefore, the spin

period is divided into 24 f s or 16 sectors. Similarly, the platform circumfer-

ence is divided into 2 4 fz or 16 sectors by means of the shaft angle encoder.

The time interval between the phase shifted 24 fs simulated sensor pulse and

the 24 fz shift angle encoder pulse represents the fine error position signal.

Rate information is also derived by taking the first back difference of position

errors; i. e., the change in position error between the present value and the

last previous value is a measurement of relative rate. The coarse and fine

position errors and rate errors are used to derive a motor torque command

and force a stable null condition.

Since the rotor rate is not constant during the mission, the measuring

of the intervals between pulse occurrences in terms of fractional spin periods

is a primary problem. A special "clock" is required and is provided by the

phase lock loop. In addition to generating the selected inertial reference (fs),

the phase locked loop also generates a high frequency clocking signal having

212 pulses per spacecraft revolution. This high frequency pulse sequence is

phased locked to the actual sun or star sensor pulse and, therefore, each

clock pulse represents 1/212 of the spin period or 0. 088 deg.

Despin Control Electronics

The despin control electronics block diagram is presented in Figure

5-13. Although the phase lock loop which generates the clock signals for

time measurements and the simulated sensor pulses at 16 times the spin

frequency is a part of the attitude data processor electronics unit, (see
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Section 5.2), it warrants further discussion here along with the individual
functions of the despin electronics unit.

Phase Lock Loop

As previously noted, position errors are derived based ontime meas-
urements having units of fractions of the spin period and, in addition, use sim-
ulated sun or star pulses interspaced betweenthe real sun or star sensor
pulses. The spin period synchronizationis generated by the phase lock loop.

The phase locked loop is a variable frequency pulse generator which
maintains both frequency and phase lock with the input sun or star signal.
The prime element is a voltage controlled oscillator (VCO) whose frequency
is controlled by a number stored in a digital register. Since the VCO is an
analog circuit, a digital-to-analog converter is also required. Under zero
error conditions for the phase locked loop (i. e., phase and frequency lock
with the input signals), the VCO will generate 212 pulses for each spacecraft
revolution; i. e., during the time interval between the occurrence of two con-
secutive sun or star sensor pulses. A simple countdown register provides
additional output frequencies fs, where fs is the spin frequency as stored in
the VCO. The fs pulses are then used by the despin control torque command
generator to determine position error using the 212 fs pulses as clock signals.
Each 2 1 2 f s pulse represents 0. 088 deg of position error." The fs output of the
phase locked loop countdown register is fed back to a phase detector which
measures the time difference between the real sensor pulse and the simulated
(fs) pulse, again using the 212fs as a counting clock. The register controlling
the VCO frequency is then altered until a zero error condition is achieved.

Position Loop and Sector Signal Processing

The 16 times spin speed (24 f ) sample rate of the position loop divides
the 360 deg per spin period into 16 sectors of 22.5 deg each. The sectors
are referenced to the fs input from the phase lock loop. The desired sector
of operation is chosen by ground command and stored in a sector register.
A divide by 212 counter using the fs and 212fs inputs from the attitude data
processor provides the necessary spin synchronous frequencies. These

outputs are delayed by the number in the delay register. The delay is sent
by ground command and allows position control in 0. 35 deg increments. The
number of 2 4 fs pulses between the delayed fs reference (fsDEL) and the
master index pulse input are counted and the difference between the number
counted and the number stored in the sector register is decoded and the
polarity stored. The difference will be zero when operating in the desired
sector. When the sector is not the desired one, a pulse of torque at the fs
reference time will be applied in the direction of the commanded sector and
the position loop output will be inhibited. When the desired sector has been
acquired, the sector logic can be disabled by ground command if desired.

The position loop processing controls the pointing in a 22. 5 deg sector.
The shaft angle encoder input is buffered to get a 2 7 f signal, which is synched
to the master index pulse input and counted down to get 24 fz for position pro-
cessing. The number of 21 fs pulses between a 24 f s pulse and a 2 4 f z pulse is
counted and stored in the position register. The null position is a phase differ-
ence of 11.25 deg, or a count of 64 1Zf s pulses. The number in the position

register is digital-to-analog converted and shaped and summed with other
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torque inputs to provide position control. The position output can be

inhibited by ground command.

Both the position and sector outputs are integrated and the integrator

output also goes to the torque summer.

Rate Loop Signal Processing

The rate loop processing is performed by counting the number of 2 1 2 f s

pulses between consecutive 2 7 f z pulses from the shift angle encoder processor.

The number of 21 2 fs pulses counted is stored in the rate register, digital-to-

analog converted, and summed with other torque inputs. The normal gain is

selected for optimum performance at 5 rpm, but this can be doubled by

ground command to improve performance at higher spin speeds.

Ground Command and Torque Bias

Ground commanded numbers are stored in the torque bias register,

digital-to-analog converted and summed with the other torque inputs to pro-

vide a command bias capability.

5.5 MECHANISMS

The Pioneer Venus baseline mechanism configuration is designed to

achieve the following functions: thermal control, pyrotechnic release of the

bicone antenna and magnetometer boom, and bicone antenna and magnetometer

boom deployment. Figure 5-14 shows the mechanisms location on the basic

spacecraft bus. A brief functional description of mechanism technique used

to achieve the desired functions is given below. Detailed performance charac-

teristics are presented in Appendix C.

Thermal Control

Active thermal control fo.r equipment mounted to the spacecraft equip-

ment shelf will be accomplished by utilzing the bimetallic actuated thermal

control louvers that have been previously qualified for military program. The

effective emittance of the controller is automatically regulated as a function

of average surface temperature under the thermal controller.

Pyrotechnic Devices

Dual pressure cartridge pin pullers will be utilized for the release

of the mechanisms. These pin pullers will be operated by redundant single

bridgewire pressure cartridges. Either the single bridgewire Apollo standard

initiator or the single bridgewire Viking standard initiator will be utilized.

The use of one of the initiators will provide the pyrotechnics with demon-

strated reliability and performance characteristics.
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TABLE 5-3. ESTIMATED MEASUREMENT ERRORS

Pulse to Pulse (3 cr)

Error Sources at 60 rpm Bias Errors, deg Random Errors, deg

Electronics (0.5 ms/bit) 0.18 0.02

Middle range sun sensor

( 2 _ ) 0.25 0.07

(') 0.3 0.05

Upper, lower range sun sensor

( -4) 0.5 0.14

(k) 0.7 0.1

Star sensor

(. 1 0.5

or 4 ) 0. 14 0.36

Spacecraft alignment (sensor) 0.1 -

Spacecraft dynamics 5 0.1 0.2
(wobble) (nutation)

TABLE 5-4. UNPROCESSED LUMPED ERRORS (3r)

Using Upper or Lower
Sun Sensor Using Middle Sun Sensor

Measurement Bias, deg Random, deg Bias, deg Random, deg

0.55 0.25 0.34 0.10

2 0.77 0.43 0.40 0.42

2 0.24 0.54 0.24 0.54
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Bicone Antenna Mechanism

This antenna extension mechanism consists of a telescopic tube, a

pyrotechnic pin puller and two negator extension springs. Two coaxial

cable canisters are mounted to the outside tube containing the antenna cables

in a large loop configuration. This provides apositive cable guide during deploy-

ment. This mechanism will be required on the probe bus when launched by

the Thor/Delta.

Magnetometer Boom

The light-weight 42 in. magnetometer boom design utilizes a one-piece,

rigid, pivoting tube. The boom is maintained in a stowed position and

supported by a pyrotechnic pin puller during launch. Rotation of the boom,

after pin puller actuation, is accomplished utilizing the centrifugal forces

associated with the spinning spacecraft.

5.6 SUBSYSTEM PERFORMANCE (THOR/DELTA)

This section summarizes the principal performance aspects of the

attitude controls and mechanisms subsystems. The models and analytic

results are given in Appendices A and B.

Attitude Determination Performance

Two values of lumped sensor errors can be represented by unprocessed

data measurements and processed data measurements. The processed

measurements are assumed to be smoothed and the bias errors removed by

obtaini'ng measurements from more than one star at a given spin axis attitude.

Table 5-3 lists the basic error sources and the estimated magnitude of the

errors. The bias estimates are based on easily achievable tolerances with

similar sensors at reasonably low cost and represent an expected worst case.

The random errors represent an estimate of the pulse to pulse (or sample to

sample) jitter. The bias errors are assumed to be independent as are the

random errors.

Lumped errors can be calculated for specific measurements and

various sun and star sensor combinations. The lumped bias errors shown in

Table 5-4 are the rss of the appropriate bias errors and the lumped random

errors are the rss of the appropriate random errors from Table 5-3 without

smoothing. It is assumed that at least 25 samples of data will be used to

estimate the mean value of the measurements; therefore, the standard devi-

ation of the processed random errors will be reduced by at least a factor of

5 from that shown in the table. As can be seen from examining the lumped

random errors, if 30 samples of data are used to estimate the mean value,

all of the measurement errors should be s 0.1 deg. Bias estimation is per-

formed by the attitude determination software. In practice, however, a

residual bias error will always remain due to a finite electronic quantization

error of the time interval measurement between the sensor pulses. This

bias error will vary between 0.18 deg (maximum) at 60 rpm to 0.015 deg
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(maximum) at 5 rpm. In addition, only a finite number of iterations will be

performed to estimate the bias corrections required to give the same spin

axis attitude from multiple star measurements.

To demonstrate the effects of measurement errors on attitude deter-

mination, the attitude errors for various sun-star-azimuth angles and star

declination were computed and graphed for the nominal Pioneer Venus atti-

tude; i.e., with the spin axis approximately normal to the ecliptic plane.

The 3r deviation of the processed random errors for measurements of ( 2 -i),

( 4-* or iZ :') were all estimated to be 50.1 deg after filtering by ground soft-

ware. To illustrate the effects of large residual bias errors, plots were

made assuming only slight improvement by the software in estimating the bias

errors. Specifically, the bias errors shown in Table 5-5 for the middle sun

sensor were used. Plots were also made assuming no bias estimation errors

to show what is possible with multiple star measurements.

These attitude errors versus sun-star azimuth separation angle are

graphed in Figures 5-15 through 5-18. Figures 5-15 and 5-16 show the effect

of the lumped errors for the middle range sun sensor in Table 5-5 using the

dual slit, single slit (canted and vertical) schemes. Figures 5-17 and 5-18

show the effect if the bias errors are removed. Figures 5-15 and 5-17

assume that the star appears at the upper edge of the sensor field of view

(closest to the spin axis) and Figures 5-16 and 5-18 assume that the star

appears at the lower edge of the sensor field of view. When the sun-to-star

angle, measured in the ecliptic plane is +90 deg, the dual slit star sensor

configuration is unusable. The canted slit star sensor becomes unusable at

about +125 and -55 deg from the sun. Good coverage at 0 and 180 deg is pro-

vided by the straight slit star sensor configurations when dual slit operation

is unsatisfactory. By comparing the Figures 5-15 and 5-16 or 5-17 and 5-18,

greater accuracy (least error) is obtained for the star highest in the field of

view. Figures 5-15 and 5-16 show that the 0.9 deg attitude determination

requirement can be met over a large range of sun-star angles even with large

residual bias errors, especially for star angles high in the field of view. Fig-

ures 5-17 and 5-18 show that if the biases are removed, the sun-star azimuth

angle range over which any particular slit configuration cannot determine atti-

tude to the required accuracy is rather small; i.e., only 50 deg of the total

azimuth range of 360 deg, or 14 percent, is denied any one of the three slit

configurations. These figures can be used to estimate the attitude determina-

tion accuracy associated with any sensor configuration at any point of cruise

or orbital history. Therefore, they assist in selection of optimum stars and

sensor configuration.

Quantitative studies were also made for non-nominal attitudes, cor-

responding to sun aspect angles of 15 and 55 deg (the upper and lower edges

of the upper sun sensor field of view). The bias and random measurement

errors in Table 5-5 associated with the upper sun sensor were summed.

The star was positioned at both the upper and lower limits of the star sensor

field of view. At a sun angle of 15 deg, attitude errors for each sensor con-

figuration were within the +3 deg allowed for most sun-star azimuth angles;

the single slit configuration provided superior accuracy over all sun-star

geometries. At a sun angle of 55 deg the attitude errors for all sensor
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TABLE 5-5. ASSUMED PROCESSED (RESIDUAL)
LUMPED ERRORS (3o-) FOR ANALYSIS PURPOSES

Using Upper or Lower Using Middle Sun
Sun Sensor Sensor

Measurement Bias, deg Random, deg Bias, deg Random, deg

o. 6 0.1 0.2 0. 1

-. * or 4 0.5 0.1 0.3 0.1

-4 0.2 0.1 0.2 0.1

configurations were within the ±3 deg allowed for a smaller sun-star azimuth
angle range; however, the errors within the permissible range were larger
than those corresponding to a sun angle of 15 deg. The poorer accuracy at
the 55 deg angle is due to the smaller sensitivity of the upper sun sensor to
sun angle changes. This sensitivity was traded for the ability of upper sensor
to detect the sun at small sun angles. Multiple star measurements at this
sun angle would reduce the residual bias error of the upper sensor and sub-
stantially improve its performance. In summary, multiple star measurements
should be made to obtain estimates of the bias errors which will exist in the
attitude measurements. Ground software should be used to filter the pulse-to-
pulse random error dispersions and to compute an estimate of system bias
errors. At least two independent attitude measurements should be made;
i. e., two stars and the sun to obtain the bias estimator. In addition, at
least 25 samples of each data set should be taken to compute the mean value
of a data measurement in order to reduce the effects of random noise errors.

Star-sun geometry has a major effect on the accuracy of attitude
determination. Once a particular launch date is set, the right ascension of
the sun relative to the stars can be determined and an analysis can be made
to determine the particular stars which will provide acceptable accuracy for
attitude determination.

If smoothed random errors do not exceed 0. 1 deg and the residual
bias errors'do not exceed 0. 1 deg for the 4-' 2 , *:-L4, and 4-L~ measure-
ments, the 0.9 deg attitude determination accuracy requirement for the nom-
inal attitude is easily satisfied. The electronic quantization step size should
not exceed 0. 2 deg so that the average bias error will not exceed 0. 1 deg for
a large number of data samples. The system bias errors should be required
to remain relatively constant (<0. 1 deg per week drift) following inflight
calibration to minimize the frequency of calibration. The pulse-to-pulse
random errors should not exceed 0.5 deg (3r) to minimize the number of data

samples required to obtain a good estimate of the mean value of the measure-
ment. Using these error tolerances, the range of sun-star azimuth angles
must be +90 ± 65 deg for the dual slit mode; 0 + 65 deg, and 180 + 65 deg for
the single vertical slit mode; and 40 ± 65 deg and -140 ± 65 deg for the single
canted slit ('- = -20 deg) mode during the cruise phase of the mission.
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TABLE 5-6. JET CONTROL PERFORMANCE

Probe Orbiter

Maneuver Jet Select Mode at 60 rpm At 60 rpm At 5 rpm

Attitude 1) 5A 64 P 0. 40/P 0. 60/P 1. 0°/P

Precession 2) 5A + 6A + 7A P 0. 20/P 0. 30/P 0. 50/P

3) R- 2R + 3R.4R P 0.050/P 0.030/P 0.070/P

Spin speed 1) IR + ZR + 3R + 4R C 0. 06 RPS/S 0. 12 RPS/S 0. 07 RPS/S
2) 1R-3R + 2R 4R C 0. 12 RPS/S 0. 24 RPS/S 0. 14 RPS/S

AV 1) 6A-7A C 0.17 MPS/S 0. 15 MPS/S

2) 5A + 6A + 7A C 0. 064 MPS/S 0. 085 MPS/S 0. 076 MPS/S
P .. 0. 0085 MPS/P 0. 0100 MPS/S 0. 0025 MPS/P*-

3) 1RZ 2R + 3R*4R P 0.015 MPS/P 0. 019 MPS/P 0. 018 MPS/P

Notes: P = pulse (117 ms)

C = continuous
S= 30 ms pulses

"; = twice per spin period pulsing



Attitude/AV/Spin Speed Control

Maneuver Control

The Pioneer Venus spacecraft jet configuration can perform all attitude/
spin speed/AV maneuvers redundantly; i.e., each maneuver can be performed

with more than one jet or combination of jets. Table 5-6 summarizes the

fundamental performance characteristics of the possible jet control modes

applicable to maneuvers for the probe bus at 60 rpm (cruise spin rate) and

for the orbiter at 60 rpm (initial cruise spin rate) and at 5 rpm (orbital spin

rate).

Because of uncertainties in the mass and geometric properties of the

spacecraft, in timing, and in the impulse and alignment of the thrusters, the

executed maneuver will deviate from the nominal maneuver; in addition, these

uncertainties will, in general, induce cross-talk or coupled maneuvers. As

an example of cross-talk, the execution of an axial AV maneuver will cause

incremental changes in attitude, spin speed, and radial AV. Furthermore,

spacecraft nutation is generally induced. One can fully appreciate the uncer-

tainty and cross-talk associated with a specific maneuver (spin speed, radial

AV, axial AV, attitude precession) on a spinning body by examining an error

block diagram for that maneuver. Error block diagrams for the Pioneer

Venus selected Thruster arrangement and required maneuvers are given in

Appendix A. Algorithms were developed (see Appendix A) for estimating

performance parameters for every kind of maneuver, and their associated

uncertainties and cross-coupling effects. These were then used in conjunction

with typical values for the first order error sources (shown in Table 5-7 and

5-8) to assess the errors for all basic maneuvers required by both the probe
and orbiter missions.

The various maneuvers and associated errors are summarized in

Tables 5-9 through 5-12. Note that the axial jet mode can execute the first

midcourse maneuver to the required accuracy even with an open loop pre-

cession to the required AV attitude. Open loop rhumb line precession was

examined in some detail during the studyperiod. Figure 5-19 summarizes the

key results. For an initial attitude uncertainty of 1 deg at cruise attitude, jet

torque phase angle error of 1 deg and 4 percent impulse uncertainty, the

uncertainty in the final attitude for =90 deg procession toward or around the

sunline is =4 deg. Since impulse uncertainty contributes =3. 6 deg to the final

attitude error. The impulse uncertainty is the dominant error sources; limi-

ting impulse uncertainty to 4 percent is equivalent to controlling open loop

precession errors to 4 deg for the largest precession anticipated. Note that

upon return to the cruise attitude following the midcourse maneuvers, an
attitude touch-up and spin speed trim would probably be required. Using the

radial jet mode for a large first midcourse maneuver would require an attitude

and spin speed touch-up during and after the maneuver in order to deliver the

AV to sufficient accuracy and reestablish cruise conditions. For the various

attitude precessions required for the probe separation sequence, attitude

errors are significant and indicate that attitude determination during
this sequence is probably necessary. Typical in-orbit AV corrections at 5 rpm

generate significant attitude errors and residual nutation; these disturbances

5-37



0 y

wC

c 80
- INITIAL SUN ANGLE = 900

70 (AT ECLIPTIC NORMAL)
S60

94

mj c 50
.IJ 4

0 40

zLL

z o

0 O

W 4.5

( 4.0 TOTAL

3.5
I.0 FINAL ATTITUDE IN

3.0 - -ECLIPTIC PLANE

2.5

U 2.0
INITIAL ATTITUDE UNCERTAINTY = 1

w 1.5- -

I- 1.0
F_ SP =0.04 P
S 0.5 I

Z 90 91 92 93 94 95 96

RHUME LINE PRECESSION, P, DEGREES

FIGURE 5-19. ATTITUDE UNCERTAINTY RESULTING FROM

LARGE OPEN-LOOP PRECESSION

5-38



TABLE 5-7. ASSUMED UNCERTAINTIES (3-r)

Item Units Symbol Numerical Value

Weight kg 6W 0.23

Thrust (or nozzle) misalignment deg E 0.1

Thruster (or setting) misalignment deg 6P 0.1

Principal-axis tilt deg y 0.15

Quantization deg 6 6 0. 35

Radius cm 6R 0.25

Axial offset cm AZ 0.25

Sun-pulse deg 6cc 0. 5

Thrust centroid sec 6tc 0. 004

Duration sec 6T 0. 25

Spin speed rad/s 60 0

Initial X-attitude deg 6 Ax 0.7

Initial Y-attitude deg 6Ay 0.7

Initial in-plane uncertainty deg 60 0.7

Initial out-of-place uncertainty deg EI 0.7
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TABLE 5-8. ASSUMED PER-UNIT UNCERTAINTIES (3cr)

Item Symbol Numerical Value

For one jet, continuous mode:
0.03

For pulsed modes, radial or
axial (calibrated): 0. 03

For pair of axial jets (axial

AV) continuous mode: 0.04

Spin moment of inertia 6Iz/Iz 0. 01

deteriorate antenna pointing and imply that attitude corrections may be
required after such maneuvers.

Attitude Stability

The Pioneer Venus spacecraft spin axis attitude will be perturbed

during the missions by solar torque, aerodynamic torque and maneuver

torques. Also, because the spacecraft is not perfectly balanced, the nominal

spin axis will cone around the true principal axis at spin speed or, equiva-

lently, the spacecraft will wobble. Table 5-13 summarizes the worst case

attitude disturbances for both the probe and orbiter missions. Solar torque

estimate indicates that the spin axis could be allowed to drift through ±2 deg
deadband between orbital corrections with no attitude touch-up required.

Aerodynamic torque could introduce daily attitude correction requirement if

periapsis is sufficiently low. However, since precession is = normal to the

orbit plane and the earthline is close to orbit plane during first part of the

mission, the initial effect is to precess the spin axis around the earthlin-e.

Attitude perturbations due to orbital corrections can be significantly reduced

(<0. 5 deg) by use of the 180 deg bang-band AV mode. Also, if thrust mis-

match were limited to 1 percent, a pair of axial jets would perturb the attitude

< 1 deg; mismatch calibration and timing jet start could then be used to move

the angular momentum vector in a preferred direction in inertial space; i. e.,

compensate for another disturbance. Therefore, with suitable calibration

and sufficiently high periapsis, the attitude correction cycle can be made

coincidental with the orbital correction cycle. The attitude distrubance due

to aerodynamic precession torque at probe bus entry is small enough to

maintain the earth within the endfire antenna 22 deg beamwidth.

Nutation Damper Performance

The nutation damper performance is illustrated in Figure 5-20 for both

the probe and orbiter missions. All design requirements are satisfied.
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TABLE 5-9. PROBE BUS NOMINAL MANEUVERS AND PROPELLANT CONSUMPTION

Operation Nominal Maneuvers Propellant

Time, Consumption
Mission Phase h AV, m/sec AP, deg A, rpm lb

Initial despin 0.7 - - -30 1.0

Initial reorientation - 66.4 - 1.2

First midcourse 1.0 71.9 190.4 - 30. 5

Second midcourse 0.6 4. 2 90.0 - 3. 1

Third midcourse 0.5 0.4 - - 0.2

Large probe reorientation 3.0 - 126.9 -30 2. 0

Large probe despin - - -15 0.5

Small probe reorientation 4. 5 - 24. 1 +56 1.9

Small probe targeting 5.4 - - 1.3

Probe bus E-20 reorientation 0. 3 - 52.9 - 0.6

Probe bus targeting reorientation 3.0 - 83. 1 -11 1.0

Probe bus retardation 16.7 - - 22.0

Probe bus E-18 reorientation - 11.6 - 0.1

Final reorientation 0.3 - 7.5 - 0.1



TABLE 5-10. PROBE BUS MANEUVER ERRORS

Errors (3 ur)

Final Residual
Attitude Nutation, Spin Change

Mission Phase AV deg deg rpm (rad/s)

Initial despin 0. 025 m/sec 0. 036 0. 098 1.32 (0. 13 )

Initial reorientation 0. 10 m/sec 3.2 0. 50 0.2 (0.02 )

First midcourse ]Axial mode 3%, 3. 4 deg 14.2 0. 35 5.9 (0. 59)

Radial mode 3%, 5.2 deg 12.0 0.003 25.1 (2. 51 )

Second midcourse Axial mode 3%, 2. 1 deg 2.8 0. 35 0. 33 (0.033)
SRadial mode 3%, 3. 5 deg 2.8 0.003 1.4 (0.14)

Third midcourse 5%, 0. 5 deg 0.15 1.28 0. 1 (0.01)

Large probe reorientation 0.09 m/sec 4.5 0.70 1.3 (0.13 )
S Large probe despin 0.011 m/sec 0.014 0.11 0.64 (0.064)

Small probe reorientation 0. 075 m/sec 1.22 0.28 2.3 (0.23)

Small probe targeting 3%, 2.7 deg 0. 51 0. 002 1.3 (0. 13)

Probe bus E-20 reorientation 0.13 2.89 0.73 0. 16 (0.016)

Probe bus targeting reorientation 0.17 3.23 0.84 0. 58 (0. 058)

Probe bus retardation 3%, 0.78 deg 0.66 0.47 0.96 (0.096)

Probe bus E-18 reorientation 0. 023 1. 07 0.80 0.03 (0. 003)

Final reorientation 0.014 0.93 0.80 0.018 (0.0018)



TABLE 5-11. ORBITER NOMINAL MANEUVERS AND PROPELLANT CONSUMPTION

PropellantNominal Maneuvers
Operation Consumption

Mission Phase Time AV, m/sec AP, deg Aw,rpm lb

Initial despin - -30 0.7
0. 7

Initial reorientation - 80 - 1. 0

First midcourse 1. 0 71.7 190.4 - 23.0

Despin 0. 3 - - -30 0.7

Second midcourse 0. 6 6. 3 90 - 2. 3

Third midcourse 0.5 0. 3 - - 0. 12

Reorientation for orbit insertion 2.0 - 207 - 1.3

Reorientation for orbit insertions 2.0 - 207 - 1. 3

Typical initial-orbit correction 0. 5 5.0 - - 1. 0

Spindown for orbit operations 0. 3 - - -25 0. 6

Typical in-orbit AV 3. 0 0. 5 - - 0. 1

Typical in-orbit attitude change 0. 3 - 5 - 0. 005



TABLE 5-12. ORBITER MANEUVER ERRORS

Errors (3 cr)

Final Residual
Attitude Nutation Spin Change

Mission Phase AV deg deg rpm (rad/s)

Initial despin 0. 036 m/sec 0. 039 0. 054 1.4 (0. 14

Initial reorientation 0.10 m/sec 3.4 0. 58 0.2 (0.02

First midcourse Axial mode 3%, 3. 4 deg 14.4 0.48 6.7 (0.67

Radial mode 3%, 5. 1 deg 13. 3 0. 004 27. 8 (2.78

Despin 0.018 m/sec 0.005 0. 02 1. 3 (0. 13

Second midcourse Axial mode 3%, 2. 3 deg 2.8 0.76 0.6 (0. 06

Radial mode 3%, 2. 8 deg 3. 0 0. 005 2.4 (0. 24

Third midcourse 4. 0%, 1.8 deg 0.08 0. 13 0.08 (0.008

Reorientation for orbit insertion 0. 10 m/sec 5.6 0.68 0.2 (0. 02

Reorientation for orbit operations 0. 14 m/sec 5.6 0.70 0. 2 (0. 02

Typical initial-orbit correction 2. 2%, 0. 70 deg 0. 01 0. 08 0. 2 (0. 02

Spindown for orbit operations 0.02 m/sec 0.23 0. 37 1. 05 (0. 105 )

Typical in-orbit AV (0. 5 m/sec) 2.2%, 1. 10 deg 1.7 1.9 0.04 (0. 004)

Typical in-orbit attitude change 0.010 m/sec 0. 17 0. 51 0. 0016 (0. 0002)



TABLE 5-13. ATTITUDE DISTURBANCES

Disturbance Probe Bus Orbiter Bus

Solar torque precession <0. 03 deg/day at 60 rpm 50. 09 deg/day at 30 rpm
50.48 deg/day at 5 rpm

Aerodynamic torque -s3. 5 deg for 7 m/sec 50.7 deg for 0.2 m/sec

precession AV loss and 5 deg angle of attack during AV loss and 27 deg4 of attack
entry

Nutation

AV maneuver <1.6 deg at 60 rpm (1 jet) s3.9 deg at 5 rpm

Attitude maneuver 50. 8 deg at 60 rpm (targeting) 50.7 deg at 30 rpm

Spin speed change 50. 1 deg at 15 rpm <0. 4 deg at 5 rpm

Booster separation _<0.7 deg at 90 rpm <0.6 deg at 90 rpm

Attitude
AV maneuver 50.7 deg (targeting) at 60 rpm <2.4 deg at 5 rpm

Spin speed change 0s. 04 deg (initial despin) 50. 25 deg at 5 rpm

Booster separation 51. 4 deg at 90 rpm -1.8 deg at 90 rpm

Wobble 50. 2 deg with boom deployed <0. 1 deg with boom deployed
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Boom Deployment

The spacecraft will be statically and dynamically balanced with the
boom deployed in order to avoid a significant thrust offset during orbit
insertion, and to eliminate steady state wobble during cruise and orbit.
The former effect degrades antenna pointing and sensor biases.

Prior to magnetometer boom deployment, the 0.46 kg magnetometer
and 0. 77 kg, 1.07 m boom are stowed at a radius of 1.07 m and at station
38 on the spacecraft. The static and dynamic imbalance contributions to the
spacecraft in this state are given by 0. 9 kg-m (probe and orbiter) and 0. 046
kg-m 2 (probe, 0.27 kg-m 2 (orbiter), respectively. Thus, the laterial c. g.
offset introduced by the stowed boom is 0. 23 cm and 0. 3 cm on the probe bus
and orbiter bus, respectively. On the Delta launch vehicle prior to third

stage burn, these offsets are reduced to 0. 058 cm and 0. 064 cm, respectively,
and generate a thrust pointing error contribution about 50 percent of that
due to third stage thrust misalignment (0. 1 deg). Both of these contributions
are small compared to the combined pointing error due to second stage
guidance and third stage separation tipoff so that no significant degradation in
third stage injection is generated by a statically unbalanced spacecraft with
booms stowed.

The wobble introduced by the stowed boom is 0.077 and 0.41 deg on
the probe bus and orbiter bus, respectively. On the Delta prior to third stage
burn, these wobble angles are reduced to 0. 0025 and 0. 026 deg, respectively.
Both wobble angles represent an insignificant cosine loss for the third stage
burn.

At boom deployment, the wobble angle will transform into nutation as
the vehicle now spins about a balanced axis. This nutation will be damped out
by the mercury nutation damper. The fundamental dynamics of boom deploy-
ment resemble a conventional pendulum with the gravity field being replaced
by a centrifugal acceleration field and a torsional restraint added at the pivot
to absorb most of the kinetic energy generated by the pendulous swing out-
board. The kinetic energy that must be absorbed or dissipated is very
sensitive to spin speed, and requires that the latter be carefully controlled
( 1 rpm) at deployment to minimize design complexity. At 60 rpm, a restraint

torque z 22 N m is required to absorb most of the 68 Joules of kinetic energy
with the deployment completed in 0. 1 sec.

Large Probe Separation

Prior to large probe separation, the spin axis is aligned for a nominal

zero entry angle of attack, and the spin speed is reduced to 15 rpm. The
residual nutation induced by the latter maneuver (= 0. 11 deg) will be damped
out by the mercury damper with =8 min time constant; the induced attitude

error is small (= 0. 02 deg) compared to the attitude uncertainty of 2. 5 deg.
At separation, three explosive nuts are fired to enable three compression

springs to impart a relative velocity increment between the large probe and

the bus. Each spring is compressed 0.87 in. to generate an initial force

of 150 Ib; for a 548 lb bus and 253 lb large probe, the three springs generate
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a separation velocity of 2.5 ft/sec in 0. 045 sec. The probe aft cover

translates through the probe separation plane =0.25 sec later.

The tipoff rate induced at separation by axial force variation, lateral

forces, spring circule uncertainty and bolt impulse variation is conservatively
estimated to be :<2 deg/sec for the large probe. This results in a large
probe attitude error (bias) and nutation (coning) of 1 deg at the 15 rpm separa-
tion rate. Since the large probe principal axis can be misaligned with respect
to the spacecraft spin axis prior to separation due to installation tolerances

and probe dynamic imbalance, an additional attitude error and nutation will be

induced at separation: these errors are conservatively estimated to be 1 deg.
Therefore, the rss attitude uncertainty (angle of attack bus error) of the large

probe after separation is 2.52 + 1 + 1 = 2.9 deg; the rss nutation (angle

of attack coning error) of the large probe after separation is 12 + 12 = 1.4

deg. In the absence of nutation damping, the large probe will cone about its

angular momentum vector (average attitude) up until entry.

The tipoff impulse at separation induces a 0. 15 deg/sec tipoff rate on

the probe bus. This results in a bus attitude error and nutation of 0. 065 deg.
In other words, the bus is a fairly stable launch platform. In general, the

angular motions of the two separating bodies tend to reduce static clearance

margins while the extremities of the two bodies overlap. A separation

clearance analysis indicates that the conical shaped aft cover will easily
clear the separation plane even with worst case attitude errors and nutation

induced at separation.

Small Probe Separation

Pirior to small probe separation, the attitude will be determined to

an accuracy of 2.5 deg and the spin speed will be measured to an accuracy of

0. 08 percent. Separation of the small probes takes place in a plane perpen-

dicular to the actual spin axis. Therefore attitude uncertainty results in a

small probe AV component parallel to the measured spin axis. The small

probes are nominally separated with an "in plane" AV component of 5.7 m/sec;
the maximum "out of plane" AV error induced is 0.25 m/sec. This AV error

would result in a variation of l1. 7 min from computed small probe entry

times. Spin speed uncertainty contributes to a magnitude error of the "in

plane" AV component. A general analysis was made to determine the errors

in the small probes "in plane" velocity vectors (magnitude and direction)

resulting from various design tolerances. The method used and results

obtained are now summarized.

The system was treated as though the probes were released sequentially.

Since only the velocity components normal to the initial trajectory are of

interest, each body may be treated as having only three degrees of freedom --

two linear and one rotational. Prior to its release, each probe is constrained

to have a fixed position and angular orientation relative to the bus. The mo-

tion of each probe subsequent to its release is calculated by using the positions

and velocities at the instant of its release to determine the initial conditions
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for the three-degree of freedom equations of the motion of the probe. The
bus with any of the remaining probes attached is still regarded as a single

rigid body. Its subsequent motion may be determined from the velocity of
its center of mass, together with its angular position and rate at the instant

of release of the previous probe. Any impulse acting between the probe and

the remaining body are taken into account at this point. It is readily apparent
that the motion after the release of a subsequent probe may be calculated
similarly, without considering further the motion of the previous probe.
After the effects of the release of the final probe, the motion of all three

probes and the remaining bus will be known.

A study of the effects of varying the parameters which could affect

the probe velocity was performed. The parameter variations of importance
were: radial offset of probe c. g. due to installation and spacecraft dynamic

imbalance; angular offset of probe c. g. due to installation; common release

time uncertainty due to quantization, sensor jitter and squib driver; non-
simultaneity of release due to squibs; probe impulse due to preloaded clamp;
bus c. g. offset; and initial spin speed uncertainty.

The errors which result from these various tolerances are shown in

Table 5-14, assuming a sequential release of Probe 1, Probe 2, and Probe 3

a millisecond apart. There were no errors due to changes in weights or

moments of inertia. The 3r- error in the magnitude of the "in plane" AV for

any probe due to all error sources is 50.02 m/sec; the 3r- error in the direc-

tion of the "in plane" AV is 5 1 deg. These errors represent a small statis-
tical contribution to the overall target impact dispersions.

At separation, the impulse due to the clamping mechanism could induce

a tipoff rate of <4 deg/sec for the small probe. This results in a small

probe attitude error and nutation of 0.5 deg; allowing an additional 0.5 deg

error due to principal axis tilt, the rss attitude uncertainty and nutation after

separation are 2.6 deg and 0.7 deg, respectively. Subsequent despin to 15

rpm with the spin jets will increase this nutation angle to 3. 3 deg and intro-

duce an additional 0. 5 deg attitude error. In the absence of nutation damping,

the small probe will cone about its angular momentum vector (average
attitude) up until entry.

A detailed separation clearance analysis indicates that points of mini-

mum separation clearance between the bus and small probes will comfortably
clear one another ( 1 in.) =0. 1 sec after squib firing.

Venus Orbit Insertion (Orbiter Spacecraft)

In the event all the propellant allocated for midcourse maneuvers has

not been used, a preburn of the axial jet pair at the retro end of the orbiter

spacecraft will be executed just prior to orbit insertion; this will match the

motor impulse to initial orbited mass so that a near 24-h orbit period is

achieved. The orbit insertion will take place at 30 rpm. The average thrust

pointing error duringtheburnis proportional to- the misalignment torque and

inversely proportional to the spin kinetic energy. With thrust = 3850 lb, a

thrust misalignment of 0. 1 deg and c. g. to nozzle throat distance of 1.4 ft,
one obtains a pointing error of 0. 7 deg. This error together with the
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TABLE 5-14. EFFECTS OF VARIOUS TOLERANCES ON PIONEER VENUS
SMALL PROBE VELOCITY ACCURACY

.Effect of Tolerances

Probe 1 Probe 2 Probe i

Probe I Probe 2 Probe 3 Probe 2 Probe 3 Probe 3

Velocity Angle Velocity Angle Velocity Angle Velocity Angle Velocity Angle Velocity Angle

m/sec deg m/sec deg m/sec deg m/sec deg m sec deg m, sec deg

Design Value 5.7 90, 5.7 210, 5.7 330' 5.7 210- 5.7 3 0' 5 7 10'

Distance to probe c.g.,AL = 0.25 cm 0.019 0 0 0 0 0 0.019 0 0 0 0.019 0

Angle tolerance, AO = 0.30 deg 0 0. 3000 0 0 0 0 0 0. 3000 0 0 0 0. 100

Release time lag, At = 0. 001 sec 0 0. 3466 0 0. 3466 0 0. 3466 - - -

Sequential release, 00, 0.001, 0. 002 0 0 0.0058 0. 3929 0. 0058 0.7402 - -

sec

Probe impulse effects lb-sec 0.0005 0. 3035 0.0041 0.023 0.0042 0. 025 0.0005 0. 3035 0. 0085 0.0014 0.0005 0. 1015
(radial)

RSS error 0.019 0.550 0.0071 0.524 0.0072 0.818 0.019 0.427 0.0085 0.0014 0.019 0.427

Bus c.g. offset, 0.025 cm - --

Initial spin speed, 0.08 percent 0. 0043 0 0.0043 0 0. 0043 0 - - -

Total rss error 0. 0195 0. 550 - - - - 0.0206 0.676 - - 0. 021 0.923



attitude measurement uncertainty of 3 deg combine to yield a worst case

pointing error df 3. 7 deg for orbiter insertion. The maximum nutation

after burn is 2. 2 deg; this will damp out with a time constant of 20 min.

Despin Control System

The Pioneer Venus mission objectives dictate pointing accuracy

capability in the units of degrees regime. The mechanically despun hi-gain

antenna provides a 3 dB beam width of 11 deg, thus allowing both the long

term and short term pointing errors to be constrained within several degrees.

Long term errors are associated with both internal and external disturbances

while short term errors; i.e., time periods of 60 sec or less, are wholly

associated with spacecraft induced disturbances.

Error contributors to azimuth pointing motion are summarized in

Table 5-15. The error budget consists of two classes of errors: those that

are oscillatory with time and those that are secular; i. e., monotonically

increasing with time. Only the short term secular errors are considered

because the despin design provides a full 360 deg azimuth pointing capability.

The random or oscillatory errors consist of two components: a bounded antenna

bias error, and sinusoidal terms occurritig at spin rate. The systematic

contribution to the azimuth pointing error is due to kinematic coupling of

spacecraft nutation.

The despin control system has been modeled using both analog and

digital simulation and it has been verified that the pointing stability perfor-

mance requirement is met in the presence of expected worst case distur-

bances and sensor noise. The performance capabilities of the proposed

design are summarized in Table 5-16.

The detailed rationale supporting the despin design (control loop

analysis and simulated performance) is presented in Appendix B.

TABLE 5-16. DESPIN CONTROL SYSTEM PERFORMANCE SUMMARY

System Characteristics 5 rpm 30 rpm

Acquisition time, min 54.0 1.0

Gain margin, dB 29. 0 12. 0

Phase margin, deg 57. O0 35. 0

Torque margin 4. 0 4.0

Effective loop bandwidth, Hz 0. 7 0. 7
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TABLE 5-15. SUMMARY OF AZIMUTH POINTING ERRORS

5 rpm 30 rpm

Source Sun Sensor Ref Star Sensor Ref Sun Sensor Ref Star Sensor Ref

Random contributions

Random noise and uncertainty ±0. 25 ±0. 3 ±0. 25 ±0. 3

PLL limit cycle ±0. 1 ±0. 1 0. 1 ±0. 1

Friction noise variations 0. 9 ±0. 9 ±0. 62 ±0.62

Antenna misalignment ±0. 1 0.1 +0. 1 0. 1

Sensor misalignment ±0. 05 *0. 05 *0. 05 ±0. 05

SAE misalignment ±0. 05 *0. 05 ±0. 05 *0. 05

Thermal distortions ±0. 1 ±0. 1 ±0. 1 ±0. 1

Total rss ±0.95 0. 95 ±0.7 ±0.71

Systematic contributions

Kinematic coupling * 0. 26 - 0. 26

(nutation 50. 20 deg and star
at 51. 5 deg from ecliptic)

Total azimuth error ±0.95 ±1.23 ±0.7 *0.97



6. ATLAS/CENTAUR BASELINE

6. 1 GENERAL

The Atlas/Centaur launch vehicle will be used for both missions in

1978, and this has resulted in the following major mission related changes
affecting the ACMS performance requirements:

* Attitude orientation normal to ecliptic prior to separation
from launch vehicle.

* Spacecraft spinup after booster separation, =5 rpm

* 4.42 m (14.5 ft) magnetometer, boom deployment on orbiter

* Spacecraft spinup to 25 rpm for cruise operations

* Reorientation of orbiter spin axis to north ecliptic normal
for orbital operations (new Type II trajectory baseline)

* Retargeting probe impact points

A summary of the mission profile for the probe mission is depicted

in Table 1-3, Section 1. A summary of the mission profile for the orbiter

acquisition, cruise and encounter modes is depicted in Table 1-4, Section
1. The need for incorporating an X-band radio occultation experiment on

the orbiter spacecraft is an additional requirement for the baseline Atlas/
Centaur configuration only.

The primary control concept proposed for the Atlas/Centaur remains

identical to that of the Thor/Delta, including all basic performance charac-
teristics. The component changes proposed for the Atlas/Centaur different

than those proposed for the Thor/Delta stem from a reassessment of the

tradeoff studies allowing maximum use of -cost effective hardware and the

incorporation of the radio occultation experiment. These component changes
and the mission related changes are described in detail in this section. A

summary of the component changes is given below:

1) The star sensor boresight angle shall be centered at +32 deg

from the ecliptic plane.

2) A three element segmented boom shall be used to deploy the
magnetometer sensor head 4. 42 m (14. 5 ft) radially outboard
of the solar cell array.
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3) The bearing and power transfer assembly (BAPTA) will employ
a brushless motor design.

6. 2 MISSION CHANGES RELATED TO ACMS

Probe Mission

Orientation perpendicular to the ecliptic will be executed by the
Atlas/Centaur attitude control system. Such a procedure is standard prac-
tice and imposes no undue stress on the Centaur capability as evidenced by
four Intelsat IV launches to date. Spacecraft spinup is easily executed by the
on-board spinup thrusters in response to commands from the on-board
memory, and enabled via command subsystem memory after separation by
redundant separation switches. This technique has been successfully demon-

strated on four Intelsat IV spacecraft and several other classified spacecraft.

The spacecraft will be spunup to =5 rpm and remain at this rate until

changed by ground command. Propellant in plenums between the latch valves

and the two spinup thrusters ensure only hydrazine feed during the initial stages
of a 0 g spinup. The time interval between termination of the initial spinup

and ground station acquisition will allow the hydrazine in the tanks to settle
out-board and be available for any commanded maneuvers. Residual nutation

at 5 rpm is damped out by the passive mercury damper.

After ground station acquisition, the probe bus spin axis attitude and
spin rate will be determined, and then adjusted for cruise, i. e. , spin axis
perpendicular to ecliptic, forward end pointing south, and spin speed at 25

rpm. The use of the Atlas/Centaur significantly reduces midcourse maneuver

requirements; the 99 percentile midcourse AV requirement is =12 m/sec as
compared to 77 m/sec for the Thor/Delta. The reduced propellant require-
ment makes the vector mode (correction in cruise attitude) more attractive
for the first midcourse maneuver, since the increase in propellant (maximum
40 percent) for this mode is comparable to the maximum precession propel-

lant required by the axial jet mode. Execution of all midcourse maneuvers
with the vector mode relaxes any time constaint caused by thermal consider-
ations. This, in turn, allows the 4. 5 N thruster to once again become a
viable candidate, with the resultant advantage of smaller attitude disturbance

at low spin speeds. The 22 N thruster has been retained for the Atlas/Centaur
baseline study; however, the option to select the 4. 5 N thruster is retained
pending an updated Atlas/Centaur configuration that meets contract perform-

ance requirements.

Since the 1978 probe mission occurs during a different part of earth

year than the 1977 mission, the inertial transit trajectory and star visibility
is different. Evaluation of star sensor coverage in the southern ecliptic
hemisphere shows that attitude determination capability and performance at
the cruise attitude are as good as the Thor/Delta baseline. Star sensor bore-

sight and cant angles are common with those employed on the Atlas/Centaur

orbiter baseline discus sed in the following paragraphs. Space axis attitudes
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required for large probe separation, small probe targeting and separation,
as well as probe bus targeting and entry, can be determined using the avail-
able stars. The encounter timeline is identical to that for the Thor/Delta
baseline. The small probe separation will nominally take place at 47. 5 rpm.

Orbiter Mission

Remarks for the probe mission separation, reorientation and initial
spinup are identical for the orbiter mission. After ground station acquisition,
however, the spin speed will be trimmed, if necessary, to 5 +1 rpm for mag-
netometer boom deployment. The boom design utilizes centrifugal force to
deploy the sensor 4. 42 m (14. 5 ft) radially out-board of the solar panel
drum. Restraint springs and latching mechanisms at each of the three
hinges provide energy storage and dissipation to soften dynamic interaction
with the orbiter bus during deployment. After deployment, the orbiter spin
axis attitude and spin rate will be adjusted for cruise; spin axis parallel to
south ecliptic pole, spin speed =25 rpm. Remarks on the orbiter midcourse
maneuver requirements, required propellant, vector mode and the 4.5 N
thruster are identical to those for the probe bus.

The Type II trajectory, south periapsis (56 deg) polar orbit has been
chosen for the Atlas/Centaur baseline. The required precession to the orbit
insertion attitude from the nominal is =34 deg; no inversion maneuver of the
type required for the Thor/Delta is necessary. However, the sun angle at
insertion will generate more solar input to the aft end of the spacecraft and
thus limit the time allowed at this attitude. To reduce thermal prob-
lems after insertion, a small reorientation normal to the sun line will be
executed 20 minutes after insertion (initiated by the command memory).
Upon reacquisition of the ground station, the attitude, spin rate and general
spacecraft status will be ascertained. A precession of the forward end to
the north ecliptic pole will thenbe executed in order to locate velocity sensi-
tive instruments in the direction of orbiter velocity at periapsis. The Thor/
Delta Type II, north periapsis (27 deg) baseline required the spin axis at
the south ecliptic pole for orbiter science. However, orbiter corrections
for the Atlas/Centaur baseline still require exclusive use of axial thrusters
at the retro end of the spacecraft so that thruster configuration rationale
for the orbiter is identical.

Since the Atlas/Centaur orbiter mission occurs at the same part of
the earth year as the Thor/Delta mission, the inertial transit trajectory
and star visibility during cruise is nearly identical. However, the star
sensorfor the Atlas/Centaur orbiter is required to scan the northern ecliptic
hemisphere in orbit. Since there are fewer stars in this hemisphere than in
the southern one, all having lower declination, star sensor parameter
changes from the Thor/Delta orbiter are required. It was determined that
the optimum star sensor boresight angle should be 32 deg from the ecliptical
plane for spin axis at the south ecliptic pole during cruise and at the north
ecliptic pole in orbit. In addition, the second star sensor slit should be
canted +20 deg (instead of -20 deg for the Thor/Delta) in order to insure
slit redundancy during the entire mission. (See Appendix A for explanation
of cant effects on attitude determination). Attitude visibility for orbit
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insertion is also assured for this choice of parameters. In the interest of

commonality, this choice was also made for the probe bus with the resulting
performance more than adequate for that mission.

6. 3 MAGNETOMETER BOOM

For reasons of magnetic cleanliness at reduced system costs, it is
desirable to deploy the magnetometer sensor package well out-board of the

spacecraft residual magnetic field. The larger payload capability of the

Atlas/Centaur booster permits consideration of devices capable of such

deployment. The orbiter configuration design requires that a magnetometer
sensor weighing about 0. 54 kg (1. 2 lb) be deployed to a position 4. 42 m
(14. 5 ft) (18 ft from the spin axis) radially out-board of the bus solar array.
Furthermore, the instrument cable, consisting of nine pairs of twisted,
shielded leads, must also be deployed with the sensor. The three candidate
devices studied are presented below.

Storable Tubular Extendible Member

With minimum restraints on weight and power, a power driven

extensible boom of the SPAR bistem type is a possible candidate. The re-
tracted boom is reeled up as a flat ribbon in a cassette/mechanism. Ideally,

the instrument harness would also be a ribbon type cable which is easily
stacked in an accordian-fashion and simply deployed. This type of design offers

the advantages of controlled rate deployment, retraction, if necessary, and

optional extension positioning. It also eliminates the requirement for velocity
controls and/or impact damping mechanisms. The devices are available as

almost off-the-shelf packages and have been used extensively in space
applications. In this application, however, there are two serious drawbacks
to the use of this design, both of which concern, or are caused by, the
instrument electrical cable. The cable is required to be nine pair of stranded
twisted shield type for magnetic considerations. This cable is extremely
difficult to stow as a coil and is even more difficult to deploy from the coil

position. Recorded failures of the extensible boom type of device on the
Apollo program have been associated primarily with cable stowage or cable

deployment problems. Furthermore, the alignment requirement between
the spacecraft spin axis and the sensor axis in the deployed position cannot
be assured because of the twisting moment executed on the boom by the cable

and the inability to control tip rotation during the unreeling/tube formation
sequence.

Coilable Lattice Extendible Boom (Astromast@)

The Astromast - is a linear lattice structure, or boom, which is
deployed from the retracted into a compact stowage volume. The mast is
constructed of thin, epoxy-glass longerons arranged in an equilateral triangle.

The lattice structure is retracted by forcibly twisting it about its axis. This

twisting causes the "batten" members to buckle. With the battens so
shortened by buckling, the mast can be retracted into a compact configuration.
The distortions that the longerons and battens undergo during retraction and

deployment are elastic so that deployment and retraction can be repeated.
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This design provides a convenient and reliable method for storing and
deploying the sensor cables. The nine twisted and shielded pairs will be
split into three wiring bundles, each bundle being attached to a longeron.
The wiring harness therefore will deploy and retract in unison with the boom.

The boom is deployed by actuating a pyrotechnic cable cutter
contained within the boom canister.

This boom design, in the deployed position, will not withstand the g-

forces associated with orbit insertion motor firing. Therefore, the boom must

be retracted for this maneuver, and redeployed following completion of the orbit

insertion sequence.

Segmented Boom

The segmented hinged boom that can be centrifugally extended and

can carry the cable within the boom represents the third possible candidate

studied. The boom supports the magnetometer sensor package at the end

of the last member of a three segment assembly as shown in Figure 6-1.

The three segment assembly is mounted on the orbiter shelf, folded in

accordian-fashion in the stowed position during launch and secured by pyro-

technic pin pullers which divert launch loads from the assembly and sensor.

Deployment occurs upon ground command when the two pin pullers (wired

in parallel) are actuated releasing the assembly to take advantage of the

orbiter's spin rate in driving the three segments into a straight, rod-like

configuration which locks after all of the deployment energy has been
absorbed at the hinge points. This results in a predetermined sensor
position sufficiently beyond the solar array to minimize shadowing effects
on solar cells, as well as magnetic effects of the orbiter on the magne-
tometer. A brief discussion on the key elements of magnetometer boom
is given in the following paragraphs:

* The boom assembly consists of three tubular beryllium
members containing the electrical interface cable (nine
twisted and shielded pairs) having adequate service loops
at each hinge point. Beryllium material provides excellent

weight/ stiffness ratio and nonmagnetic properties.

* The assembly is mounted on the orbiter shelf with its main
pivot assembly and all hinge axes in the plane perpendicular
to the spin axis. The pivot and hinges contain energy absorption
springs (at each of the three hinges) to soften dynamic interaction
with the orbiter bus during deployment and to insure positive
latching with adequate margin.

* Release of the pin pullers (wired in parallel for simultaneous
firing) deploys the hinged boom radially, assisted by a kickoff
spring and the rotor spin rate. Positive locking occurs at each
hinge point and at the main pivot by means of a caming surface
and deformation latch blade.

6-5



MAGNETOMETER

SENSOR UNIT

STOWED
POSITION

SUPPORTAI ..

A) \TO ELECTRONICS

, UNIT

C A BL ooP
AT JO NlS VIEw A-A

LATCH LOCKS

INBOARD HINGE

OUTBOARD HINGE DEPLOYED

DEPLOYED

FIGURE 6-1. MAGNETOMETER BOOM IN STOWED POSITION

6-6



* A simulation model of the magnetometer boom deployment
has been generated to show the deployment dynamics and to
size the restraining springs. A typical boom deployment
dynamics sequence is shown in Figure 6-2.

Design Selection

A summary of the design tradeoff characteristics for the three designs
considered is presented in Table 6-1. The selection of the segmented boom
as the baseline design is based upon minimum weight, complexity and the
least impact on mission success if deployment fails.

6.4 BAPTA DESIGN CHANGES

The selection of a brush motor for the Thor/Delta was significantly
influenced by the weight constraint and the inclusion in the BAPTA of a
2. 54 cm (1.0 in.) diameter single S band rf rotary coaxial joint.. The off-the-
shelf Telesat BAPTA considered for the Pioneer Venus required modification
to accept the rotary coax joint. The modification, as well as the oversized
motor design (for the Pioneer Venus mission), resulted in the selection of a
new scaled down BAPTA with the incorporation of a brush motor instead of
a brushless motor for the baseline Thor/Delta design. The brush motor
simplified the drive electronics, resulting in less weight.

The advent of the radio occultation experiment has resulted in a
larger rotary coax joint required for the BAPTA to accept both an S band
and X band signals. The larger dual frequency rotary coaxial joint (4. 6 cm
diameter) is associated with a bigger BAPTA than the one proposed for the
Thor/Delta. The required size of the BAPTA proposed for the Atlas/Centaur
allows use of the basic Telesat unit as the most cost effective approach. For
this reason, the Telesat BAPTA modified to accept X band and S band rf
rotary coaxial joint and employing a brushless motor was chosen as the
baseline design.

The assembly, shown in cross section (Figure 6-3), consists of four
major subassemblies:

1) The brushless motor assembly (provides despin control torque)

2) The main bearing assembly (provides relative rotation)

3) The encoder (provides a master index pulse, a rotation sense

pulse, and 128 angular rate pulses each revolution)

4) The electrical contact ring assembly (ECRA) (provides for

power and signal transfer across the spinning/despun interface)

The BAPTA design is the result of extensive experience in the design,
fabrication, test, and successful orbital operation of high reliability despin
bearing assemblies for Hughes Tacsat, Intelsat IV, Telesat Domestic, and
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TABLE 6-1. MAGNETOMETER BOOM DESIGN TRADEOFF SUMMARY

Boom Type

Storable Tubular Coilable Lattice

Extendible Member Extendible Boom

Parameter (Star Bistem) (Astromast) Segmented Boom

Weight mass (excluding 4. 54 (10.0) 4. 13 (9.1) 3. 27 (7.2)

sensor) kg (ib)

Power, watts Motor = 20 Motor = 21 Two pin pullers

Cable cutter (squib)

Number of times necessary Deploy twice Deploy twice Deploy once

to deploy or retract Retract once Retract once No retraction required

Boom Fails to Extend

Cruise wobble =4. 1 deg Cruise wobble =3. 8 deg Cruise wobble =5. 1 deg

Orbit wobble = 1. 6 deg Orbit wobble = 1. 4 deg Orbit wobble = 1. 9 deg

Failure

Mode Boom Fails to Retract

Effects 8 to 17 deg wobble during 8 to 17 deg wobble during No impact

retro firing can result in retro firing can result in

mission failure mission failure

Notes: 1) For segmented boom, spacecraft dynamically and statically balanced with boom deployed.

2) For retractible boom, spacecraft statically balanced with boom stowed and dynamically balanced

with boom deployed.
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military satellites. The motor and bearing portion of the BAPTA is identical
to that flown successfully on Telesat. The ECRA design is new, but the
essential features of lubrication and brush and ring design and geometry are
borrowed directly from previous flight proven despin assemblies. Design
characteristics of the BAPTA are summarized in Table 6-2.

The BAPTA design minimizes the use of screw threads, screws, and
lock wire within the spinning housing structure. Where their use is unavoid-
able, integrally machined bosses are employed to ensure entrapment of
metallic chip debris in blind (non-thru) threaded holes.

The bearings, preload spring and assembly housing/shaft are designed
for adequate structural stiffness to attain acceptable dynamic response of
the supported spacecraft sections during launch accelerations. Bearing sus-
pension and preload design compensate for local thermal gradients over the
mission operating temperature range, to minimize frictional torque variation.
Key elements in the BAPTA design changes for the Atlas/Centaur baseline
are described in the following paragraphs.

Brushless Motor Design Description

The motor selected for Pioneer Venus is a fully redundant, resolvercommutated brushless dc torque motor, identical to the Telesat, Western
Union, and AMSAT despin assembly motors. The motor is shown schema-tically in Figure 6-4, and consists of two redundant sets of motor windings,
segment wound on a common lamination stack (motor A windings occupy halfof the circle, and motor B windings the other half), and two fully redundant,physically separated resolvers, mounted in a common housing. The physicalsegregation of the resolvers, motor windings, lead harnesses, and connectorsto each motor/resolver pair eliminates the possibility of a single failure
affecting both sets simultaneously, thereby maximizing reliability. Themotor stator contains the magnets and two sets of resolver salient poles on acommon sleeve. The motor redundancy features extend to the electronics
where one of the two electronic sets drive 4 specific sets of motor winding.

Commutation control of the dual wound brushless motor is providedby a redundant pair of electromagnetic resolvers, one for each set of motorwindings. Each resolver consists of a stator and rotor, rigidly mounted andprecisely aligned to the structure that support the motor stator and rotor,
respectively. The stator is built of high permeability iron laminations andhas eight poles. The rotor contains a primary (excitation) coil and pair ofsecondary (sine and cosine output) windings on a laminated iron structure.

Functional operation of the resolver is shown in Figure 6-5. Theprimary (excitation) coil is magnetically coupled to each secondary (output)
coil via the air gap and the poles of the stator. When an excitation voltageis applied to the primary windings, rotation of the rotor relative to thestator causes sinusoidal variations in the output voltage of each secondary
winding as the pole pieces pass the rotor coils. The angular spacing of the
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TABLE 6-2. BAPTA DESIGN CHARACTERISTICS

BAPTA type Basic Telesat design

Add on slipring and optical encoder

Use beryllium shaft and housing

Bearings

Size 6.0 cm (60 mm) bore
9. 5 cm (95 mm) O. D.

Type Angular contact, 25 deg C. A.

Tolerances AFBMA Class 9

Material 440C CEVM

Balls 19 each, 1.02 cm (13'32)diameter, Grade 5

Retainer Cotton phenolic, outer race riding

Lubrication HMS 20-1727, vacuum impregnated

Encoder

Type Optical (gallium arsenide)

No. of sensors 6 (2 fully redundant sensors for each function

Master pulse I per revolution (two redundant sensors)

Rotation sense pulse . I per revolution (two redundant sensors)

Angular rate pulse 128 per revolution (two redundant sensors)

Output voltage 2 V across 10 K12

BAPTA friction torque

Maximum 4 C (40F, 35 rpml 0.20 Nm (0.15 ft-lbs

4 C (40'F. 5 rpm) 0. 16 Nm (0. 115 ft-lbsi

Nominal 21C (70'F. i5 rpm) 0. 14 Nm (0. 10 ft-lbsi

21'C (70 F. 5 rpm 0. 115 Nm (0.085 ft-lbsi

Torque margin, single motor

Worst case 4 C (40 F, i rpm 0.72 0.15 4.8 to

Nominal 21 C 70 F, (S rpm 0.72 0.13 7.2 to I

BAPTA weight 14. 50 lbs

Motor parameters

Type Brushless, resolve commutated

No. of motors Two, segmented on common lamination

No. of resolvers Two, separate laminations

Torque constant 0. 87 * 5 percent ft-lbs amp

Back EMF 1.18 * 5 percent V rad sec

Winding resistance 24 * 5 percent ohms

Minimum torque output:

One motor, 24 volts applied:

35 rpm 0.95 Nm (0. 72 ft-lbs)

Stall 1. 17 Nm (0. 87 ft-lbs)

Slipring parameters

Ring material Coin silver

Brush material SM 476 485 percent Ag, 3 percent C.
12 percent MoS 2

Ring diameter 5.84 Cm (2. 3 in.

Signal type circuits

No. of rings 7

No. of brushes ring 2., common wear track

Brush type Cantilever spring (MILSA' signal design)
Brush tip area (0. 060 x 0.245 0.0147 in. 2,, 0. m

2

Brush force 2a r

Current rating (at circuit)

Continuous duty 0. ZZ A (75 A in. Z2

10 percent duty 2.z2

Intermittent duty 20 A IZ0 ns pulsel

Friction torque \l 0.2l 0.04 Nm 10.01 ft-lbs

IBrushlwear life ((a 35 rpml '20 years
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secondary coils relative to the spacing of the pole pieces is such that the
voltage produced in the two secondary coils is 90 deg out of phase electrically.
The sine and cosine resolver outputs are demodulated and operate on the
despin motor drive electronics such that current is applied to the motor sine
and cosine windings in the same phase.

The output torque capability of one motor winding set is illustrated in
Figure 6-6, for the minimum bus voltage condition (24 V available to the
motor). Also shown is the worst case BAPTA torque, as allowed by the
flight acceptance test specification. The margin of available motor torque
above BAPTA friction reduces as spin speed increases. At the maximum
spin speed of 35 rpm, the torque margin is 4. 8 to 1. At lower spin speeds,
the margin increases.

Features of the motor internal construction include firmly anchored
and potted lead wires, sealed protective covers over motor, and resolver
windings, potted laminations to provide lamination support and good heat
dissipation characteristics, and a metal sleeve over the magnets to provide
a smooth polished surface at the air gap. A final grinding of all critical
diameters is performed after assembly of the rotor and stator. This provides
a continuous, smooth, highly concentric air gap, and facilitates final cleaning
and inspection operations. Alnico IX magnets are used for maximum field
strength and high coercive force to preclude demagnetization due to any
conceivable electronic transient.

6. 5 RADIO OCCULTATION EXPERIMENT INTEGRATION TRADEOFF
IMPACTS

A system design tradeoff was made to assess the impact of integrating
the S and X band radio frequency occultation experiment into the spacecraft.
(See final report, Volume 4). The basic requirement for the experiment
was to maintain the spacecraft S and X band transmitter antenna beams point-
ing at the "virtual" earth for 2 to 3 minutes during the start and termination
of an occultation period. Two schemes were considered which would impact
the design of the ACMS. These were:

1) Use of the orbiter high gain antenna as a steerable antenna by
providing azimuth slewing of the antenna assembly and elevation
slewing of the reflector (fixed feed) at rates up to 5 deg/min.

2) Precession of the spacecraft spin axis to effect inertial slewing
of the orbiter despun antenna over the range of +10 deg at rates
up to 7 deg/min.

Steerable Antenna Tradeoffs

Providing the steerable antenna capability involves the addition of an
elevation drive positioner mechanism on despun antenna assembly and asso-
ciated control electronics on the rotor. The control signals from electronics
to the positioner would be transferred via slip rings on the BAPTA from the
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rotor to the despun assembly as illustrated in Figure 6-7. The positioner
assembly supports and positions the antenna reflector on a single axis gimbal

assembly such that the antenna dish centerline may be elevated through an
arc of +5 deg at a rate of 0 to 5. 0 deg/min, while the antenna feed remains

fixed. The orientation will be set prior to launch and locked in position by

ground launch. In orbit the antenna will be released and reorientated in orbit

by ground command. Gimbal angle positions relative to spacecraft coordina-

tion system are telemetered to provide antenna orientation information.

Two methods for positioning the antenna dish were considered as

possible candidates to perform the antenna positioning. These were a jack-

screw drive mechanism and an on-axis drive mechanism.

Jackscrew Drive

The jackscrew drive design consists of a single axis gimbal and

structure mounting subassembly and an actuator subassembly. The gimbal

and structure support the antenna, provide the angular excursion freedom

and attachment interface with the antenna support mast. The actuator is

installed on the gimbal assembly such that linear motion of the actuator,

acting at a radius arm, produces the antenna angular orientation. (See

Figure 6-8).

The gimbal axis utilizes anodized and dry film lubricated bushings.

Structural elements are designed of high strength aluminum alloy material.

The linear jackscrew actuator consists of an aluminum leadscrew and

an aluminum spherical nut, a redundant stepper motor, and a rectilinear

conductive plastic potentiometer. The motor operates through a spur gear
reduction stage to drive the jackscrew in rotation. The nut is constrained

to linear motion as the screw rotates. The irreversibility of the linear

actuator is obtained through the jackscrew nut and motor detent load. This

permits the actuator to hold the antenna rigidly when not being commanded.

The motor utilized is a four phase permanent magnet stepper type.

This motor produces up to 0. 2 Nm (30 in-oz) of running torque with a 90 deg

step angle in a size 15 configuration. Motor mass is 0. 21 kg (9 oz) and the

operating power is approximately 15 W at 40 C (72 0 F). The. required opera-

tional output torque is calculated on the basis of the imbalance moment pro-
duced by the combined antenna and positioner structure weight (on earth).

This total force requirement is approximately 2. 0 Nm (18 in-lb). The calcu-

lated torque provided by the gear box/motor subassembly is 5. 95 Nm

(53. O0 in-lb).

Postulating an improbable but possible failure mode of the drive

mechanism, provision has been made to effect a return of the antenna to zero

elevation angle. This is accomplished by attaching springs (see Figure 6-8)

to the antenna mounting structure which will drive the antenna to its zero

position if the jackscrew drive is decoupled from the antenna. Decoupling is
effected by actuating a pin puller, which separates the lead nut of the jack-
screw drive from the antenna structure.

6-17



00

SLOCK AN/TENA
AT 0- ELE'ATIOI

(P/N PULLER)

Oo 0

-/0

00

P/AJi PULLER

ANTENNA DIA 81.28 cm (32.00 in.) GEAR BOX RATIO 6:1

ANTENNA WT 1.77 kg (3.9 lb) MOTOR: 4 PHASE, 900 STEP, (1-50 PP)

OUTPUT TORQUE 0.0133 Nm (2.0 in.-lb)

SIZE 15 PM MOTOR

FIGURE 6-8. JACKSCREW DRIVE



On-Axis Drive

The on-axis drive mechanism design considered is similar in

structural design and attachment interface to the jackscrew drive. The drive

mechanism which produces the antenna interface orientation consists of a

gear box subassembly and a large spur sector gear. The sector gear is

attached to the gimbal assembly such that rotational motion of the gear box

output pinion drives the sector gear to produce antenna angular motion.

The actuator subassembly consists of an aluminum housing and alum-

inum gears, aluminum sector gear and redundant stepper motors. The same

motor is used as in the jackscrew drive. A servo mounted, wire wound,
cermet, conductive plastic potentiometer is used to provide gimbal angle

data.

In this design, the motor detent load provided by each motor is the

only means of preventing the antenna dish from back driving through the gear

box, therefore making it necessary to attach a pin puller to prevent irrevers-

ibility of the actuator during launch and boost stages, and a brake device to

prevent back driving through the gear box after the pin puller is released.

Such a device will necessarily reduce the torque margin in the system.

The attachment of the gear box subassembly to the gimbal structure

must be carefully analyzed to prevent the gear teeth of the output gear of the

gear box and the sector gear from impacting each other during the launch

vibration environment. To prevent gear damage, it may prove necessary to

"float" the gear box with respect to the sector gear which would increase the

design complexity and weight. Without floating the gear box, the weight of

this unit is estimated at 3. 06,kg (6. 75 lb), and with the float feature, the

weight could exceed 3. 7 kg (8 lb).

A "return to zero" feature in the event of a drive mechanism failure

can be accomplished with a pin puller and spring arrangement to decouple

the drive gear from the sector gear. The complexity would be slightly

greater than that required for the jackscrew design.

Conclusions

Table 6-3 summarizes the key tradeoff considerations in selecting

the proposed elevation drive mechanisms. The jackscrew mechanism was

selected for the lower weight, cost, and complexity of the design. Reliable

in-flight performance of the mechanism has been demonstrated on four

Intelsat IV satellites.

In addition to providing the elevation drive capability, an azimuth

slew rate capability must be added to the hi-gain antenna despin control

system. This requires the addition of a rate command hold register and

counter to the despin control electronics (DCE) to provide stepping of the

antenna azimuth position at a rate of 0 to 5 deg/min. Table 6-3 includes the

impact of this change on the DCE along with the elevation drive electronics.
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TABLE 6-3. HIGH GAIN ANTENNA POSITIONER (ELEVATION DRIVE) TRADEOFFS

Item Jackscrew Drive On-Axis (Sector Gear) Drive

Accuracy, deg ±0. 5 ±0. 5

Mass

Elevation mechanism, kg (Ib) 2.49 (5. 5) 3. 06 to 3. 3 (6. 75- 8. 0)

Electronics, kg (lb) 0. 27 (0. 6) 0.27 (0. 6 )

BAPTA sliprings, kg (lb) 0. 45 (1. 0) 0.45 (1. 0 )

Driving element One required - 15 W stepper One required - 15 W stepper
motor; four phase motor; four phase

Permanent magnet Permanent magnet

Pin pullers Two required Three required

State of.development Motor and mechanism Motor only qualified on
qualified on Intelsat IV Intelsat IV

Cost factor 1.0 1. 2

Failure mode

Return to zero mechanization 1.0 1. 2
complexity factor



Spin Axis Precession Tradeoffs

Precession of the spin axis to maintain the S and X band despun
antenna pointing at the "virtual" earth during occultation was investigated as
an alternative to the "steerable" antenna approach. The guidelines used to
study this approach were: spin rate of 5 rpm, spin axis precession of
average rates up to 7 deg/min, nutation limited to =1 deg (with passive
nutation damping negligible), propellant requirements not excessive, and
compatibility with current jet control scheme desirable.

The fundamental problem area associated with this approach is point-
ing accuracy. The spin angular momentum is low implying that it is easy to
precess the angular momentum vector. However, the combination of large
precession rates and a long spin period (jet pulse interval) also imply a large
precession per pulse. This, in turn, leads to a large residual nutation dur-
ing the precession. Since nutation damping is negligible and the nutation
occurs at a low frequency (=7. 5 cpm for a roll to pitch moment of inertia
ratio of 1. 5), the attitude error due to initial uncertainty and open loop
precession must be added to residual nutation to evaluate the instantaneous
spin axis pointing error.

Two spin axis precession modes illustrated in Figure 6-9 were
considered. The first mode is the standard pulse mode of firing any one of three.
axial jets (or the pair of jets that generates a pure couple) at spin frequency.
The second mode is the alternate fire mode of pulsing axial jets (1 and 2)
on the retro end of the spacecraft alternately at twice spin frequency or
pulsing the axial jets (2 and 3) that thrust opposite one another alternately at
twice spin frequency. Both modes require a total of 1. 8 kg (4 lb) of propel-
lant to execute 4 deg of precession each day for the 40 days of the occultation
experiment. The principal advantage of the alternate fire mode is that it can
generate twice the precession rate as the standard mode for a 57 percent
increase in maximum nutation at the Atlas/Centaur orbiter roll to pitch ratio
of 1. 6. Therefore, the alternate fire mode will generate =27 percent less
nutation at any precession rate required. The instantaneous spin axis
pointing error is estimated to be 52. 5 deg at precession rates of 7 deg/min
with the alternate fire mode where nutation contributes =1 deg to this error.
The implementation of the alternate fire mode requires a logic and timing change
in the jet control electronics. Spin axis precession employing either mode
does introduce some operational complexity. Multiple maneuver commands
must be stored for each segment of occultation precession. Attitude correc-
tion frequency would increase. Orbit disturbances would be generated if the
standard mode couple or alternate mode "opposite thruster pair" were not
employed. Radar altimetry pointing performance would probably be degraded
during the early part of the mission. The additional thruster operations
required could impact thruster reliability and thus potentially introduce
mission operational complexity. In summary, the spin axis precession
approach to implementation of rf occultation is subject to questionable
pointing accuracy, increase propellant requirements and significant increase
in operational complexity.
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Occultation Integration Conclusions

The impact of providing either a steerable antenna or spin axis

precession on the design of the ACMS for the occultation experiment integra-

tion is summarized in Table 6-4. The rf beam pointing error inherent in

precessing the spin axis is approximately 2. 5 deg for a 40 deg maneuver

(+10, -20, +10 deg precession profile) versus <0. 5 deg for the steerable

antenna. The penalty to the ACMS for the improved performance of a steer-

able antenna is approximately 1. 2 kg (2. 7 lb) and $350K. The steerable

antenna has the capability of slewing over the range of +20 deg without

disturbing the spacecraft attitude or orbit period.

The pertinent data summarized herein was used as a part of an over-

all system study related to "Dual frequency occultation experiment" tradeoff

summarized in Volume 4. Neither of the alternatives studied above were

utilized in the baseline design.
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TABLE 6-4. TRADEOFFS OF OCCULTATION EXPERIMENT
ON ATTITUDE CONTROL

Spin Axis

Tradeoff Steerable Antenna Approach Precession Approach

1) Design mechanization * Add elevation drive mechanism * Add alternate axial jet firing
and electronics mode to electronics

* Add azimuth rate control to
DCE

2) Mass, kg (lb) * Mechanism 2.49 (5.5) * Fuel 1.9 (4.2) (40 deg/day)

* Electronics 0.36 (0.8) * Electronics 0.1 (0.2)

* BAPTA 0.36 (0.8)

3) Operational Complexity * Stored slew command each * Stored multiple maneuver
orbit commands each orbit

* Daily attitude correction

e Daily orbital period distur-
bance

* Science operations interfer-
ence

4) Reliability Considerations * Design must include "return to * Additional thruster operations

zero" elevation position in event in the "blind"
of elevation drive mechanism
failure

5) Beam pointing accuracy, * Error <0.5 * Error 2.5

deg

6) Growth potential * Can increase elevation slew * Can increase precession range
range to ±20 deg with no impact to ±20 deg with -double weight

on design and pointing error increase

7) Cost factor (hardware), * 400 K e 50 K

dollars



APPENDIX A. MODELS AND ANALYSIS FOR ATTITUDE

DETERMINATION, ATTITUDE AND VELOCITY CONTROL

ATTITUDE DETERMINATION

Attitude Determination Analysis Model

The spin axis attitude is determined by the use of dual fan sun and

star sensors (Figure A-1). The sun sensors (3) L fans and star sensor J*

fan can be assumed to be coplanar with the spacecraft fixed XSZS plane. The

intersection of the ith 4i and 2 fan is declinated by the angle e i . The inter-

section of the 4P* fan and the 42 fan is declinated an angle a. The sun sensor

2 fan and star sensor L'fan are rotated about their respective boresights
through angles P and P3. When the sunline or star line of sight is coincident

with the appropriate fan, a4, 2, 4*, or 42 pulse occurs. Measurement of

the LL2, 44* and 4* pulse intervals provides the required information to

determine spin axis attitude. Figure A-2 illustrates spacecraft-centered
inertial coordinates XIY Z I with Aries (y) along X I and the ecliptic pole
(north or south) along +Z I . The Euler angles 4 and 8 define spin axis attitude

and together with the spin angle 4, they define the inertial location of the 4

fan or equivalently any point on the spacecraft. From this geometry, eight
general relationships can be derived by a sequence of Euler angle rotations,
i.e., rotation of the ZIZ S plane about Z I , e rotation of Z S in the ZIZ S plane
and L rotation of X S about Z S . The angle AS defines the right ascension of

the sunline. To simplify notation somewhat, AS will be assumed zero; how-

ever, in practice the angles 4 and A will be set equal to 4) + A S and A + AS,
respectively. The angles A and E are the star right ascension and declina-
tion angles, respectively.

When the sunline is coincident with the 4 fan, the Euler angles are

defined by:

tan 4 = -tan 4 cos 8 (1)

The equation which defines the Euler angle relationships for sunline

coincidence with the P2 fan is:

tan 8 cos 4 = sin ( 2 - ) ctn P csc e i + cos (P2 -Lp) cot e i  (2)
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A condition for Equation (2) is that the sun be in the field of view (FOV)
of the and LP2 fans. This condition is given in the following equation:

sin ei c co s ( 2 -) + cos ei sin > cos FOV (3)

Equations (2) and (3) may also be used to define the star sensor FOV
relationships by equating J= LP*, 2= P=P '* and el=a. Using this set of sun
and star equations with measurements of 'VP2 and 4A'J angles, Equations (1),
(2) and (2*) can be solved simultaneously for the Euler angles. This is the
dual slit star sensor attitude determination scheme (measure aspect angles of
two inertial targets).

For the case of a single star sensor slit using measurements of 'I-Pi
angles, Euler angle relations are defined by the following equation:

cos {cos( - P) (sin 6 tan E cos a tan p*-cos 0 cos(-A)cos a tan P*-sin( -A

+sin( -L) (sin 0 tan E-cos 0 cos(P-A)+cos a tan -3* sin( -A)) 1

+sinicos( P-l ) sin tan E-cos cos(-A)+cos a tan P* sin(W-A)

-sin(p - ) (sin e tan E cos a tan 13-cos 0 cos(p-A)cos a tan 1*-sin( -A))}

+sin 0 cos(p-A)sin a tan p*+cos 0 tan E sin a tan p* = 0

(4)

The condition for the star b'eing in the FOV of the P slit is given by
the following equation:

sin a (cos 8 cos E cos LP cos (V-A)-cos E sinL sin( -A)-sin 8 sin E cos i)

+ cos a (sin 8 cos E cos(so-A)+cos 8 sin E) > cos (5)

Using Equations (1), (2), and (4) with measurements of P2 and iP'P2
angles, the Euler angles can be derived for certain geometry conditions dis-
cussed in the visibility section of this report. This is the single canted slit
star sensor attitude determination scheme (measure aspect angle of one
inertial target and spin angle between two inertial targets).
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By equating P*=0 deg and =qr in Equations (4) and (5), and using

measurements of 14',* angles the Euler angle relations are defined by the

following equation:

[sin e tan E - cos e cos (P-A)]tan (L4*- L) - sin (-A) 6)tan = [cos e cos (s-A) - sin 0 tan E ]- tan ( *-) sin (s-A)

Using Equations (1), (2), and (6) with measurements of L4 2 and :4* angles

the Euler angles can be derived for certain geometry conditions. This is

the single straight slit star sensor attitude determination scheme.

In summary, Equations (1) thru (6) and (2*) and (3 : ) are eight equations

which implicitly define the spacecraft Euler angles 4, E, LP in three independent

ways on the basis of four measurements; LJ 2 , L4:", 4pi and I :- spin angles.

Methodology for the Sun and Stars Visibility Study

In order to completely define spin axis attitude from sun and star

sensor data, the fundamental questions of inertial target visibility and data

sensitivity must be addressed.

The sun sensors (3) FOV will cover the range of 90 : 75 deg from the

+ spin axis (ZS). Therefore, the sun aspect angle can be measured for all

spin axis angles of rotation to within 15 deg of the sunline.

The spin axis attitudes where the star is in the sensor FOV can be

derived by pointing the centerline of the sensor FOV at the star and rotating

the spin axis (ZS) around the starline at a constant angle (a). Figure A-3

illustrates the resulting cone created by the spin axis. The thickness of the

conical annulus (defining the allowable spin axis attitudes for star crossings

of the fan) is determined by the elevation field of view of the star sensor fan.

Referring to Figure A-3, the sun sensor is used to measure the angle X

and the star sensor is required to measure either the angle X or the spin

angle (A). Given the angle E (angle between the sunline and the starline), and

the above measured angles, the spin axis attitude can be determined using

spherical triangle geometry assuming certain geometry and measurement

error limitations. Basically, the star sensor measurements must be used

to determine the spin axis position about the spacecraft sunline; i. e., the

angle (B), in order to determine the spacecraft attitude.

Using the dual slits ( ',~:*) of the star sensor, a change in the star

declination angle X will be detected for spin axis motions in the starline-spin

axis plane. When the spin axis is near the sun-star-spacecraft plane, the

detected motion about the sunline will be minimum; i.e. , 8k/8ap will be small.

Likewise, the maximum sensitivity of 8a/8o will occur when the angle (A) is

near 90 deg.
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To determine the attitude using only a single ( 4 or P '2) star sensor

slit becomes a little more complicated. Since the star angle, A, cannot be

measured directly using a single star sensor slit, the motions of the spin

axis about the sunline must be determined from measurements of the spin

angle (A) between the sunline (4) and the starline (: or ). However, when

the plane of the - or t2 slit is normal to the sunline, at the time of a star

pulse, no change in spin angle (A) will be detected for rotations of the spin

axis about the sunline; i.e., aA/aB will be zero. Looking at Figure A-3, this

condition will exist at spin axis position (1) for the i#* slit. When the spin

axis is rotated through an angle P:'* about the starline to position (2), the same

condition will exist for the $) slit. At all other spin axis positions in the

annulus, a change in spin axis position about the sunline will result in a

change in spin angle between the sunline and the starline; i. e., 8A/8B # zero.

The general rule that can be derived from this example is that motions

about the sunline are not detectable when one of the P:" fans is orthogonal to

this line at the time of the star pulse. The location of the spin axis in the

conical annulus will define when one of the two star slits will not be sensitive

to this motion. Two locations displaced 180 deg on the annulus exist for each

slit. It is here that the capability of independently using either sensor slit

for attitude determination is lost. When this condition exists, the latter

process reduces to the standard technique of using a dual slit sensor to define

the star declination angle and a dual slit sun sensor to define the sun declina-

tion angle.

To demonstrate the above analytically, one can show for certain com-

binations of spin axis 4 angle and star azimuth angle A, the 4J* fan provides no

useful information; i. e. , Equation (4) becomes a trivial. Consider spacecraft-

sun-star geometry for star azimuth angles of 0 and 90 deg with the spin axis

nominally perpendicular to the ecliptic. For each of these two cases, the Euler

angle equations above can be used to determine sensor's response to spin rota-

tion, 8, toward the sunline ( = 0 deg) and about the sunline ( = 90 deg).

4* Case 1: A = 00 (Figure A-4)

Using Equations (1), (2), and (6):

(a) when

= 00 -  = 00; sin (P 2 -) = tan 6/cot -P:; 0- = 0

(b) when

S= 900- P = - 9 0 0; 2- = 0; tan (4*-4) = -sin 0 tan E

Lf Case 2: A = 900 (Figure A-4)

Using Equations (1), (2), and (6):

(a) when
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= o0-- P = 00; sin ( 2 -I) = tan 4/cot P*;

tan (i*-I) = -l/sin 6 tan E

(b) when

S= 900 - p = -900; 42- = 0; .-4I = 900

Note that for Case 2-b, star azimuth angle (A) of 90 deg, the spin axis rota-
tions about the sunline, 0, are undefined by star sensor measurements. It
is evident from Equation (6) that the most favorable geometry for the sun-
sensor-star sensor *, fan measurements occurs when A = 0 deg or the
spacecraft, sun and star are coplanar. For this geometry, the s2 - spin
angle is most sensitive to spin axis rotations toward the sunline and the $4,-)'
spin angle is most sensitive to spin axis rotations about the sunline.

In order to easily check star-sun sensor coverage of all possible
Pioneer Venus mission maneuvers and cruise-orbit history, a series of
attitude determination charts were developed. The first of these charts
employs the use of Equations (1), (2) and (6) to generate values of #4 and 8
when the starline is on the edge of a sensor fan. Plotting 4 and 6 on polar
graph paper (spacecraft at the origin) produces an annulus simulating
possible spin axis attitudes with the star in the field of view of the 11* fan at

some point in the spin cycle. Figure A-5 illustrates a typical annulus for the

star Sirius and a straight slit. 8 is measured in the radial directi'on and
in the circumferential direction. The ecliptic normal is located at the center
6 = 0 deg and the ecliptic plane at 6 = 90 deg. 4 (ecliptic right ascension) is
measured in a counterclockwise (clockwise) direction in the north (south)

ecliptic hemisphere with the spin axis coming out of the page. With this

definition of coordinates, one is able to represent either the southern or
northern ecliptic hemisphere on the graph where star declination is measured
by 8 and sun and star right ascension is measured by 4. Aries (Y) is located

at 8 = 90 deg, 4= 0 deg. As before, if an attitude lies in the annulus of a

particular star, then the star sensor can see that star. The width of the
annulus is directly analogous to the width of the star fan FOV (- 25 deg). the
angular distance (D) from the star to the inner and outer edge of the annulus
is obtained from

D = ± (star FOV)(deg)

where a is the declination angle from the spin axis to center of the sensor

FOV.

The effective area of the polar annulus is reduced (unshared are in

Figure A-5) due to the measurement error sensitivity problem associated

with sun-star-spacecraft geometry discussed above. This area of error

sensitivity on the annulus can be illustrated from plots of ( *- -) measurements

versus ( 2 - ) measurements with 0 and 0 as dependent parameters. These

values are obtained from Equations (1), (2), and (6) with e = 90 deg, and

values of 0 and 0 that lie within the conical annulus of interest. An example
of how such charts are used to visualize the unshaded annulus region can be
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seen from Figure A-6 where Sirius azimuth angle A = 90 and = . Values

of 0 and 0 are read from the figure given ( 4i- ) and (LP2 - 0) spin angles. As

can be seen from the figure, there exists a point corresponding to the south

ecliptic pole where all the curves cross, implying an indeterminate con-

dition. This corresponds to Case 2-b in the previous discussion. Small

measurement errors (_0. 1 deg) will result in large attitude uncertainties for

0 < 15 deg and -20 deg < 4 < 50 deg, 145 deg < (4 < 230 deg. Removing these

values of 4 and 0 as possible spin axis attitudes from Figure A- produces

the unshaded area. Only in the shaded area can we determine attitude with

reasonable accuracy.

Direct or reflected stray sun light will also reduce the effective visibility

of the star sensor. For the purpose of this study the sun interference with

the star sensor is assumed to occur if the sunline is within 60 deg in elevation

and within 50 deg in azimuth of the center of the star sensor FOV. Treating

the sun as a star (0 deg) declination and assigning the star sensor a 120-deg

field of view (for the sun), one can use Equation (5) to determine the attitude

when the sunline is within 60 deg of the boresight in elevation. Superimposing

this 120-deg-wide annulus on the annulus plots, one can locate those star

annuli which are potentially reduced by sun interference. If attitudes within a

given star annulus also have L -k pulses such that -50 deg s (Is-) - 50 deg,

the sun interferes with the star. Generally speaking, any star with a declina-

tion less than 70 deg (6 a 20 deg) and with right ascension within 50 deg of the

sunline will suffer seriously from sun interference.

The second kind of interference with the star sensor is reflected stray

light from Venus. This occurs only during Venus approach and Venus orbit.

The level of interference depends on distance of the spacecraft from the

planet, orbit position, and spin axis direction (south or north). To facilitate

the study of Venus interference, the minimum angle between the limb of Venus

and the star sensor boresight at some point in the spincycle was graphed

versus the true anomaly and the time from perigee passage. Venus is assumed

to interfere with the star sensor if the angle between the limb of Venus and

the star sensor boresight is less than 50 deg at the time of a star pulse.

Figure A-7 gives a general picture of regions of no interference and possible

interference for the baseline Venus orbit. A summary of the results of these

studies is presented in the orbiter mission attitude determination study in a

following section.

While the polar chart provides attitude determination information at

discrete periods during the probe and orbiter missions, they become burden-

some when used to generate a continuous mission history. Their prime use-

fulness is for attitude determination during midcourse corrections, probe

release, orbit injection, etc. During cruise and Venus orbit, only attitude

determination around the ecliptic normal is needed. Summary charts of

available stars and allowable deviation from ecliptic normal for attitude

coverage versus time in transit or orbit are clearly desirable.

One can generate orbit history bar charts indicating the exact coverage

given around the ecliptic pole for each slit and by what star(s) (see Figure A-9).

The types of slits considered were a zero cant (p--"=0 deg), a -20 deg cant, and a
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+20 deg canted star slit. The length of the time in orbit in earth days
corresponding to sun right ascension is used as the abscissa and the e devia-

tion from ecliptic normal is used as the ordinate. Only the worst case,

maxumum 0 deviation from zero (arbitrary f), is used to construct the bar,

with the most useful star listed first above the bar. Other stars listed pro-

vide at least 5 deg radius of coverage. For example, during the first 44 days

after orbit injection, one is able to monitor attitude with a straight slit within

10 deg of the ecliptic normal using Sirius. One can check for coverage of the

ecliptic normal, by how much, by what star(s), and by what kind of star slit

(p*:=0 deg, -20 deg, +2- deg) for any period of the mission.

In review, the star sensor FOV polar charts show whether attitude
determination is possible for any specific attitude maneuvers and the cruise

and orbit star visibility history charts show how far the spin axis can deviate

from ecliptic normal at any time and still allow attitude to be determined with

some star and slit combination. Moreover, these charts can also be used to

determine star sensor geometric parameters (p*:, a, star FOV) for optimum

attitude determination during the particular attitude profiles of the probe and

orbiter missions. The specifics of these trades are summarized in the

following paragraphs.

Sun and Star Visibility for 1977-1978 Pioneer Venus Missions

Probe Mission (1977)

Primary probe bus attitude maneuvers are: spin axis reorientation

to south ecliptic normal after third stage separation (launch); the first mid-

course maneuver some 5 days after launch; probe release (L + 108 days);
and Venus encounter (L + 128 days). For the first midcourse maneuver,
where the spin axis could be anywhere in the southern ecliptic hemisphere,
at least 90 percent of all possible attitudes can be determined with either a

straight 4- fan or a canted Lj fan. The initial reorientation following third

stage separation can be monitored by using the sun and stars Atria and

Sirius. The various attitudes associated with large probe separation, small

probe targeting, separation and probe bus retardation and entry can be
determined by using the sun and stars Beta Grus, Vega and Alpha Hercules.

For coverage of the south ecliptic normal (cruise) attitude, the -20 deg

canted L? slit will provide useful information with 7 deg of ecliptic normal

during the entife cruise phase. This is illustrated in Figure A-8 where

angular deviation from the pole and usable stars are plotted versus transit

time for each type of slit considered. Note that with a straight ~*: slit,
there is no ecliptic normal coverage during the L + 30 to L + 37-day interval.

Sensor redundancy is lost during this interval for the straight slit configura-

tion, however, no mission requirements are sacrificed. While the straight
slit is somewhat inferior to either canted slit during cruise, it has been

selected on the basis of superior coverage at encounter.

The straight slit provides the best coverage of attitudes for small

probe targeting, separation and probe bus retardation, respectively. This

observation together with the previous one on the superiority of the -20 deg
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canted '4 fan during cruise are the basis for selecting these two slit cant

angles for the probe mission. By selecting a = 55 deg, better coverage

will be provided for the small probe release and retardation maneuver.

Therefore, the preferred parameters for the probe mission are:

1) FOV = 25 deg

2) a = 55 deg

3) p = -20 and 0 deg

An alternate attitude for the cruise phase of the mission would be to

point the star sensor in the northern ecliptic hemisphere. For the first

midcourse maneuver, where the spin axis could be anywhere in the northern

hemisphere, at least 75 percent of all possible attitudes can be determined

with either a straight *4:* slit or a canted ' slit. Given a boresight angle (a)
of 60 deg, one can monitor all midcourse maneuvers and the reorientation
maneuver to ecliptic normal after third stage separation with :-*, 4i redun-

dancy. During the cruise phase (ecliptic normal), :P* information is not

usable for days L + 11 to L + 20 or 8 percent of the mission. The 2 slit
provides useful information during the entire mission within 4 deg of the ecliptic
normal. The alternate scheme, however, does provide "cleaner" coverage

of all probe encounter maneuvers by positioning the associated attitudes more

toward the center of the annuli surrounding Beta Grus and Vega.

If one constrains the spin axis north orientation to the baseline set of
parameters (0* and ' slit FOV = 25 deg, a = 55 deg, P: = -20 and 0 deg),
the ability to determine attitude will be more difficult. i4, ip slit redundancy
around the ecliptic pole is not available for the midcourse maneuvers and the
reorientation to ecliptic normal after third stage separation. In general,
cruise phase (ecliptic normal) L:-" information is useless for days L + 0
L + 31 or 29 percent of the mission. However, the 2 fan provides useful
information during the entire mission within 5 deg of the ecliptic normal.
In summary, the set of star sensor parameters selected is significantly
affected by the spin axis orientation during cruise. The latter has been
selected to be the south ecliptic pole because of its general overall star
coverage superiority and commonality with the orbiter mission choice dis-
cussed below.

Orbiter Mission (North Periapsis Baseline 1978)

Transit to Venus. For the orbiter mission, the primary attitude
maneuvers duiing transit are associated with spin axis reorientation after

third stage separation, and the first midcourse correction some 5 days after
launch. Spacecraft cruise to Venus requires 187 days with the spin axis
nominally parallel to the south ecliptic pole

Initial reorientation after third stage separation can be monitored
using k4J slit and stars Al Suhail and Hadar. Reorientation during the first
midcourse AV correction can also be monitored with this slit for 85 to 90

percent of the possible spin axis attitudes in the southern hemisphere. The
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subsequent midcourse maneuvers are similarly covered by the p*: slit if
precession to some attitude for a AV maneuver is required. The 2' slit
(P* = -20 deg) is equally useful for all of these maneuvers.

For coverage of the south ecliptic normal (cruise) attitude, either
the i* or Ij2 slit will provide useful information within 5 deg of the ecliptic
normal during the entire cruise phase. This was illustrated in Figure A-9
where angular deviation from the pole and usable stars are plotted versus
transit time for each type of slit considered.

An alternate scheme to the baseline cruise attitude is to position the
spin axis parallel to the north ecliptic pole. For this choice, the primary
orbiter attitude maneuvers and steady state attitudes around the north ecliptic
pole can be covered. However, ,*, L] slit redundancy for the cruise attitude
and midcourse maneuver coverage in the north ecliptic hemisphere (65 to 70
percent) is decidedly less than the baseline scheme. Changing the boresight
angle (a) to 60 deg improves the cruise attitude coverage but does not improve
the midcourse maneuver coverage in the north. The fact that the midcourse
maneuver coverage in the north does not improve and is less than the baseline,
together with the mounting constraint of the star sensor (top of spacecraft),
are significant inputs for the choice of the south ecliptic pole as the cruise
attitude.

Venus Orbit Injection. Prior to retro firing, the spin axis is precessed
from the south ecliptic pole to the insertion attitude in the northern hemisphere.
Minimum coverage in the southern hemisphere is provided by Sirius and
Betelgeux, while the northern hemisphere minimum coverage is provided by
Capaella. Redundant coverage in the south is provided by Rigel, Beta Grus,
Achernar, Canopus, Mirach, Al Suhail and Aldebaran. Redundant coverage
in the north may be provided by Mira.

After the spacecraft has been inserted into orbit, the spin axis is
precessed from the northern hemisphere to the south ecliptic normal for
the duration of the orbit mission. The path is similar to the preinsertion
maneuver and, as would be expected, the coverage is the same. This cover-
age is provided by the * slit (straight); a LP- slit (P* = -20 deg) provides
similar coverage with acceptable accuracy yielding 4*, 4z fan redundancy.

Venus Polar Orbit. During Venus orbit, the spin axis is maintained
at the south ecliptic normal. The orbiter will orbit Venus for one Venus year
(225 days) after insertion. Figure A-9 defines ecliptic normal coverage for
this period for a L*- and 2J* slit. Spacecraft position in orbit for this coverage
is such that there is no Venus interference; i.e., the boresight of the star slit
is > 50 deg from the limb of the planet. Generally speaking, this implies that
the spacecraft is "beneath" the planet; this will always occur every 24 hours.
As can be seen in the figure, the L2 slit (P* = -20 deg) always yields coverage
for the spin axis attitudes within 5 deg of the south ecliptic pole. For the '5*

slit (~3 = 0 deg), coverage is similar except for the period I + 44 to I + 49
days, where the L * slit provides no useful information for attitudes around the
pole; however, a slight change in spin axis attitude will allow Al Suhail to be
used if required. Therefore, LP*, ' redundancy is lost during this period
(i.e., 2.2 percent of the orbit history).
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Since it is not always desirable to check or change the attitude
beneath the planet, it is important to know the extent of Venus interference

during all phases of the 24-hour orbit. As mentioned previously, one can

use standard orbital equations to generate the elevation angle between the

planet limb and the star sensor boresight. This angle is graphed versus

the true anomaly and time from periapsis passage in Figure A-10.

Note that the Venus limb elevation angle is greater than 50 deg for

15.5 h, with the peak at TA = 117 deg (whenthe spacecraft lies underneath the

planet). This implies that Venus can interfere with attitude determination

for less than half of the orbit. In fact, the period when Venus is actually

in the star sensor FOV (minimum angle = 0 deg) during some phase of the

spin cycle is about I h. Therefore, Venus interference with star visibility
must be investigated for 190 deg - TA 5 78 deg.

With these observations and the knowledge of the orbit plane position

with respect to Aries and the star right ascension and declination, it is a

straightforward matter to tell when Venus interferes with a star. Note that

even though Venus is within 50 deg in elevation of the star sensor boresight
during some phase of the spin cycle, it is not necessarily within 50 deg in

azimuth during the entire spin cycle. Given this knowledge, one can

construct new star visibility charts (subsets of Figure A-9) for those periods

when Venus is within 50 deg in azimuth of the star sensor boresight at some

phase of the spin cycle. These charts have been used to determine attitude

determination windows throughout the mission.

Despin Reference at Periapsis. It is necessary to have at least one

star for a despin reference during the eclipse periods at periapsis. The

orbiter descending node (crossing of the ecliptic plane after periapsis) occurs

at an ecliptic right ascension of 207 deg. Since Venus subtends a maximum

angle of 150 deg at periapsis and Venus interference occurs when the star is

less than 50 deg in right ascension from the limb, candidate stars for a despin

reference must have a right ascension between 152 and 262 deg.

Periapsis eclipses start to occur ~ 33 days after insertion. Three

stars (Hadar, Gacrux and Rigel Kentaurus) are available as despin references

for spin axis attitudes within 5 deg of ecliptic normal. In the absence of solar

eclipses, one of these stars can also be used as a.backup despin reference

at periapsis from 2 through 187 days after orbital insertion. In other words,

the sun does not interfere with star pulse generation in this time period.

If, perchance, the antenna need be despun during apoapsis eclipses
some 186 to 191 days after orbit insertion, Sirius is available (as well as

other stars). Since the sun sensor is redundant, a backup despin reference

or sensor is always available for any orbital phase of the baseline orbit.

In conclusion, for the orbiter mission, the best star sensor coverage
will be provided with the sensor scanning in the southern hemisphere with

a= 51 deg. Therefore, the preferred parameters are:

1) , L FOV = 25 deg
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2) a = 51 deg

3) P: = 0 and -20 deg

The choice of south ecliptic pole as the cruise attitude is clinched by

the requirement that the star sensor scan in the southern hemisphere during

orbital operations. Since the sensor is mounted on the top of the spacecraft
and the top must point south for science measurements at periapsis for the

baseline orbit, the choice of sensor parameters is biased. With this set of

parameters, cruise as well as midcourse star visibility coverage would be

significantly decreased for a north ecliptic spin axis cruise attitude (as

discussed above).

Alternate Orbiter Mission (South Periapsis 1978)

One of the orbiter missions being considered is to place periapsis
at 43 deg south latitude. For this mission the spin axis would be pointing

in the southern hemisphere during the cruise phase (same as baseline).
However, the spin axis would be pointed in the northern hemisphere during
orbit.

Orbit Insertion. The encounter date for the alternate scheme is the

same as the baseline; the primary difference being that insertion is at 43 deg

south latitude instead of 27 deg north latitude. Since the cruise attitude is at

the south ecliptic pole, a precession maneuver of 43 deg positions the space-
craft for orbit. injection.

This maneuver and the actual insertion attitude can be monitored using
Betelgeux. After the spacecraft has been injected into orbit, the spin axis is

precessed to the north ecliptic pole for the remainder of the orbit phase of

the mission. During this maneuver, Betelgeux provides coverage in the

south, while Capella provides coverage in the north.

Venus Polar Orbit. North ecliptic normal coverage during the period

of the orbit when Venus does not interfere is decidedly less than in the north

27 deg periapsis baseline. Between I + 25- I + 28 days no coverage is given

by a +20 deg cant 4 slit or a straight *LJ: slit. The -20 deg cant IPf slit has an

8-day period when it provides no useful information and is generally inferior

to the +20 deg cant g slit. The straight LP" slit, although inferior to either

canted 2 slits, is maintained in the star sensor because of despin considera-

tions. The period of no Venus interference (above 50 deg line) lasts 19.5 n.

This is 4 h longer than the baseline. Due to the greater availability of star s

in the southern hemisphere to cover the ecliptic pole, these extra 4 h (190 deg

_ TA s 206 deg) do not in general result in an advantage to the south periapsis

over the baseline north periapsis.

Despin Reference at Periapsis. The right ascension of the orbit plane

is the same as the baseline; the candidate stars are subject to the same con-

straint in right ascension but now lie in the northern ecliptic hemisphere.

Arcturus is the primary despin reference during periapsis eclipses, with
Alpha Hercules being a marginal backup. Apoapsis eclipses are covered by
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Mirach with Altair and Scheat as backups. In general, the number of stars

available for despin reference is more limited for the alternate choice of

orbit.

ATTITUDE CONTROL, VELOCITY CONTROL, AND SPIN SPEED CONTROL

ANALYSIS MODELS

The spin stabilized Pioneer Venus spacecraft typically execute two

types of maneuvers: AV maneuvers and attitude (spin axis orientation) man-

euvers. AV maneuvers are required for trajectory corrections and orbital

touchups; these maneuvers are conveniently divided into radial and axial AV

maneuvers. Axial AV refers to velocity increments parallel to the nominal

spin axis, while radial AV refers to velocity increments perpendicular to the

nominal spin axis. Attitude maneuvers are required to obtain the proper

inertial orientation for the AV maneuvers, to orient antennae for communica-

tions, and to maintain the proper sunline orientation for power and thermal

considerations. In addition to these maneuvers, spin speed control is

also required. For convenience, spin control will also be classified as a

maneuver. For the Pioneer Venus, orientation and spin control maneuvers

are also required for experiments and for probe separation.

The Pioneer Venus probe bus is provided with six control jets or

thrusters -- four that thrust radially and two that thrust axially; the

Pioneer Venus orbiter bus is provided with seven control jets -- four radial

and three axial. These jets nominally perform the previously mentioned four

maneuvers with some redundancy; that is, each maneuver can be performed

with more than one jet or combination of jets. Because of uncertainties in

the mass and geometric properties of the spacecraft, in timing, and in the

impulse and alignment of the thrusters, the executed maneuver will deviate

from the nominal maneuver; in addition, these uncertainties will, in general,

induce crosstalk or coupled maneuvers. As an example of crosstalk, the

generation of an axial AV maneuver will cause incremental changes in

attitude, spin speed, and radial AV. Furthermore, spacecraft nutation is

generally induced.

This appendix summarizes the error block diagrams and algorithms

for estimating performance parameters of the nominal maneuvers, the

associated uncertainties, and crosscoupling effects. The first four flow

charts A-11 through A-14 (corresponding to each nominal maneuver) display,

for each jet control mode, the first-order error sources that contribute to

the random deviation of the actual from the nominal maneuver as well as

crosstalk between maneuvers; the following seven flow charts, A-15 through

A-21, display the algorithms necessary to evaluate maneuver errors.
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APPENDIX B. MODES AND ANALYSIS FOR HIGH GAIN
ANTENNA DESPIN CONTROL

CONTROL LOOP ANALYSIS MODEL

The analytical model used in the analysis of the despin control system

(DCS) is shown in Figure B-1. In the tracking mode of operation, inertial

platform error is sampled and held 16 times per rotor spin revolution,
while the first order approximation to platform rate is sampled and held 128

or 27 times per rotor spin revolution. The line of sight (LOS) error is

processed through a proportional and an integral path to obtain a control

position torque to drive the bearing and power transfer assembly (BAPTA)
motor. The commanded torque is summed with a ground commandable bias

and a rate loop torque to form a net commanded torque signal. The net

torque (friction plus motor) controls the platform dynamics in azimuth to

maintain the despun antenna pointing at the Earth. Thus, in the steady state

condition, the net commanded torque will be equal and opposite to bearing
friction torque.

The first order approximation to platform rate is determined by
measuring the angle subtended by two consecutive shaft encoder pulses. By

comparing this angular measurement to a zero platform rate angle measure-

ment or 360/27; 3. 045 deg, the first-back-difference of position is obtained.

Any error between the two measurements indicates a change in platform

position over a fixed time, or a non-zero platform rate. The derived

.platform rate is used to provide the required system damping for both track-

ing and acquisition modes of operation.

As mentioned previously, the tracking mode position sample rate of

16 times per spin period results in a stable null in any one of the 16 sectors.

To assure automatic acquisition of the appropriate sector, the 16 times per

spin period sample rate is disabled during acquisition mode control. A

once per spin period sample of the inertial platform error is determined and

a pulse of torque is applied through a proportional and integral path to drive

the BAPTA motor. This command pulse of torque is once again summed

with a ground commandable bias and a rate loop torque to form a net

command torque. This mode of control will continue until the LOS error is

less than one half a sector, at which time the tracking loop control is en-

abled and final LOS error is nulled. Simulated performance detailed in the

latter portions of this text illustrate the acquisition technique.

The analytical model has been implemented on an analog computer

with single axis vehicle dynamics. The simulation has been utilized
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extensively to evaluate the effects of system nonlinearities, to verify perfor-
mance predictions based on frequency domain analyses, and to generate
performance prediction data. Figure B-Z shows the implementation of the
simulation model for the tracking mode, while Figure B-3 shows the imple-
mentation of the simulation for the acquisition mode.

Using frequency-domain analyses, for the configuration proposed,
the system gains were optimized to provide the desired gain and phase
margins over the operating range of spin speeds. The frequency analyses
were performed from the analog simulation using the technique illustrated
in Figure B-2. The control system is operated as a closed-loop with a
sine-wave forcing function input given by E 3 L 93. By observing the instan-
taneous amplitude and phase shift of signal E 1L@1 and E 2 LQ-2 , the open loop
transfer function GiL(S) can be determined. The principal results of this
technique are given in Figures B-4 and B-5. These results have been verified
by a digital simulation using sample data control theory.

Friction Torque Sensitivity

Figures B-6 and B-7 are plots of the transmission factor from bear-
ing friction to platform error as a function of frequency for the selected
control loop configuration. Figure B-6 shows that the most sensitive region
for operation at 5 rpm occurs for friction variations on the order of 0.05 to
0.3 Hz.

Maximum system sensitivity at 5 rpm is 2. 2 rad/ft-lb. Figure B-7
shows that the most sensitive region for operations at 30 rpm occurs for
friction variations on the order of 0. 4 to 0. 8 Hz. Maximum system sensitivity
at 30 rpm is 1. 53 rad/ft-lb.

For performance evaluation, a nominal friction value of 0. 075 ft-lb
and a maximum peak to peak torque variation of 0. 014 ft-lb has been adopted
as a standard. These assumed short term friction torque estimates are
based on Intelsat IV BAPTA design data. Therefore, worst case steady
state platform motion due to short term torque ripple in the most sensitive
frequency range will be ±0. 9 deg at 5 rpm and 0. 62 deg at 30 rpm. For
lower frequencies, the integrator effectively nulls pointing error due to
friction variations, while at higher frequency the torque variations are outside
the bandpass of the control system.

Sensor Noise Sensitivity

The principal disturbance to platform pointing is the random error on
sun or star reference pulses, PLL limit cycle effects, MIP pulse jitter and
shaft encoder pulse jitter (rate loop).

Figures B-8 and B-9 show the closed loop transfer function from
sensor noise to platform pointing as a function of frequency for the proposed
design at 5 rpm and 30 rpm, respectively. Figures B-10 and B-11 shows

B-4
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the closed loop transfer function from shaft encoder noise (rate loop) to
platform pointing as a function of frequency for 5 rpm and 30 rpm system
operation. Since the MIP pulse jitter is an order of magnitude smaller than

the sensor noise, it can be neglected. Similarly the frequency and ampli-
tude of the shaft encoder MIP pulse jitter results in a negligible platform
error. Therefore, the net 3o platform pointing inaccuracy due to pulse
jitter in the despin control system is associated with sensor noise and PLL
limit cycle effects. The total random error associated with short term
azimuth pointing error is an rss of sensor noise, PLL jitter and platform
motion due to friction torque variations. This information is summarized
in Table B-1.

Kinematic Coupling

If the despin reference is not orthogonal to the spin axis, nutation
motion of the spacecraft spin axis will cause a phase error in the azimuth
reference pulse from the .star. The principal result gives rise to an
apparent error in measuring rotor spin phase given by

A R = tan y j sin B- 9 cos $

where

AR = error in measuring phase due to kinematic coupling

Y = reference source elevation relative to spin axis normal

0 = inertial pointing angle

, 9 = nutation angles

Assuming a maximum source elevation relative to spin axis normal
of 51.5 deg and sin 0 or cos f = 1, the maximum rotor phase error shall
be equal to 1. 3 times the amplitude of the nutation. Based upon a worst
case steady state residual nutation of 0. 2 deg, the total azimuth pointing
inaccuracy shall then be 1. 22 deg for 5 rpm operation and 0. 96 deg for 30 rpm
operation using the star despin reference.

Simulated Performance

In order to investigate the overall DCS performance- and acquisition
in particular, the analog simulation has been used. to generate representative
performance data. The analog simulation has the advantage of giving instan-
taneous, real-time system response with ease in variation of pertinent
control loop parameters. The elements included in this simulation are as
listed below and graphically depicted in Figures B-2 and B-3.
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TABLE B-i. SHORT TERMAZIMUTH
POINTING STABILITY

Azimuth Pointing Error (3y)
Random Error Sources 5 rpm 30 rpm

Sensor Noise (Star Sensor) 0. 30 0. 30

PLL Jitter 0.10 0.10

Friction Torque Variations 0. 90 0. 620

Total Random Error (rss) 0.96 0.7

1) Single axis dynamics, BAPTA dynamics

2) Nonlinear error detector (fine position)

3) Coarse and fine position control logic selection

4) Multirate sampling

a) Rate

b) Fine position control

c) Coarse position control

5) DCE shaping

6) Coarse position pulse control mechanization

7) Bearing friction

8) Sensor noise

Acquisition for Azimuth Pointing

Figure B-12 shows typical time histories of the system performance
at 5 rpm using the coarse positioning control only. The coarse positioning

loop gain of 0. 20 ft-lb/rad/pulse is used to show acquisition control system

speed of response and stability characteristics. It is noteworthy to point
out that the concept of pulse torque was formulated to achieve automatic
sector acquisition for low spin speed and small platform inertia. The pulse

torque method allows a high position loop gain control for a fraction of the

total spin period, while for the remainder of the spin period system stability
is provided by the rate loop.
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Each acquisition sequence begins with the despin control electronics
in the OFF position. Thus, the platform is spunup in relationship to the
rotor (defined as a positive rate) by bearing friction and back EMF. In
steady state, with the DCE OFF for a long duration the platform rate and
rotor rate will be identical. Notice though, that at the beginning of these
runs a much larger platform rate ( 25 rpm) is introduced. The large
platform rate is introduced to illustrate the system dynamics and to provide
additional rationale for the pulse torque scheme. Once the initial platform
rate bias is nulled, the instantaneous platform rate (with the position loop
open) is defined by

T -TI

P KR

where

TF = friction torque bias

T7 = integrated friction torque

K R = rate gain

The system then continues to null both position and rate errors for acquisition
of the proper sector. Again, it is germane to note that the analog simulation
does not differentiate between ±360 and ±0 deg. However, in the actual
spacecraft despin control electronics logic will be provided to prevent an
idiot mode of operation.

Acquisition with both coarse and fine position control is shown in
Figure B-13 for 5 rpm operation and Figure B-14 for 25 rpm operation.
Note that during the acquisition cycle, the fine position control is disabled
until the coarse control brings the platform to with + 11. 25 deg (or 1/2 of a
sector) of the desired position.

Steady State Pointing

The principal disturbance for steady state pointing is bearing friction
and motor torque variations. Sensor noise, PPL limit cycle, and SAE/MIP
jitter have a second-order disturbing effect. Random type errors charac-
teristic of sensor noise are simulated by a white noise input. Frequency
depended errors characteristic of bearing and motor torque variations are
simulated by a peak-to-peak variation at a once per spin speed frequency.
Figure B-15 shows the system response at 5 rpm with random errors
characterized by white noise and bearing friction variations characterized
by a frequency dependent component. Sensor noise and PPL limit cycle
effects are simulated by 0. 3 deg amplitude, SAE/MIP jitter by 0. 15 deg
amplitude and bearing friction by 0. 014 ft-lb peak-to-peak at 0. 0835 cps.
The worst case pointing error is generally below 0. 6 deg with infrequent
peaks as high as 0.75 deg. This level is well below the allocated amount of
1.0 deg (3r).
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Despin Control System Tradeoffs

The principal tradeoffs considered in deriving the system design were
the BAPTA design, the type of control electronics, and the control law mech-
anization. A summary of the tradeoffs considered is presented in Table B-Z.
The detail tradeoff rationale for the BAPTA and control electronics is
presented under the appropriate hardware section (Appendix C). The control
law mechanization tradeoff is presented herein.

There are a number of considerations in selecting system gains or
tracking loop shaping transfer functions. These include: 1) adequate
stability margin for azimuth pointing over the entire range of spin speed,
2) reduction of pointing errors and motor torque ripple, due to sensor noise
and frequency variant friction torque variations, to an acceptable level, and
3) simplicity of design.

Both single loop (position only) and dual loop (position and rate) were
considered for normal tracking operations. A quasi-continuous (high sample
rate) rate loop eliminates a lower gain crossover (thus improving system
stability margins) and provides additional damping of nutation via platform
cross products of inertia. Additionally, the position loop dc gain and
integrator gain are normally chosen as high as possible to minimize loop
sensitivity to friction torque variations, while avoiding excessive gain to
sensor noise. The need to choose a high position loop gain for the low spin
speed and platform inertia system necessitated the use of the dual loop
control. However, the implementation of the quasi-continuous rate loop
having a suitable stable (noise free) output does require increased complexity
in both mechanical and electronic design.

Integral or nonintegral shaping can be used in the position loop. In
principle, integral shaping is somewhat more complex and yields smaller
gain margins, although the resultant sensitivity to friction variations is very
much less. The electronic complexity of integral versus nonintegral is approxi-
mately the same using the all analog shaping design approach. By imple-
menting the integrator along with one of the lead terms as a proportional-
plus-integrator stage, the potential problem of integrator windup is circum-
vented. The computed stability margins are adequate with the integral
approach. In the configuration proposed, therefore, the integral shaping
provides the desired insensitivity to friction variations without unduly
compromising the remaining aspects of system performance.

Automatic versus manual acquisition of proper sector for azimuth
pointing was considered. In principle, for near earth orbits a manual
acquisition is desirable because of the inherent reduction in spacecraft
electronic complexity, weight, and cost. However, for deep-space probes,
where the communication time period becomes unduly long, the automatic
acquisition becomes a necessity. Therefore, the proposed design provides
automatic sector acquisition by means of the coarse and fine position control
scheme.
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TABLE B-2. DESPIN CONTROL SYSTEM TRADEOFF SUMMARY

Tradeoff Considerations Selected Approach and Rationale

Brush motor versus Brush-type requires fewer electronics Brush type selected based on 1. 5 lb

brushless motor parts but involves potential wearout weight saving; reduced power con-

mode due to brush contact. Brushless sumption, approximate cost saving

type has no contact, but requires two of $30K per spacecraft and prior
power amplifiers and resolver program experience. Infinite brush

circuitry, life capability for a 2 year mission.

Shaft angle encoder, Magnetic encoders have been used Tentatively selected optical encoder

optical, magnetic or successfully on previous Hughes because this device is light weight

mechanical spacecraft but are considerably and provides suitable noise free

heavier than optical encoders. signal at 5 rpm. However, the

Mechanical encoders are lighter than mechanical encoder seems an

optical encoders, but have limited attractive alternate that will be

space flight history, studied further.

BAPTA housing and Titanium and beryllium materials Beryllium selected for superior

shaft material were considered. Titanium for ease stiffness to weight ratio. Total

selection of manufacture and lower cost. BAPTA weight savings of x 3 lbs.

Beryllium for superior stiffness to

weight ratio.

Analog vs. digital Analog is generally simpler but yields Digital was selected to accommodate

implementation a loop gain inversely proportional to the wide spin speed requirements.

spin speed. Digital offers more
design flexibility and is not spin speed
sensitive.

Automatic vs. manual Manual sector acquisition is simpler Automatic sector acquisition

sector acquisition and convenient for near-Earth orbit. selected because of the communi-

Automatic sector acquisition requires cations delays inherent in inter-

more complex mechanization, but is planetary missions

essential for interplanetary mission.

Voltage driver versus Voltage drive provides additional rate Voltage drive selected since

current drive damping and acts as a speed control. voltage mode rate damping is

Current drive delivers torque significant for the small platform

independent of speed. inertia used.

Single loop (position Single loop requires more complex Dual loop configuration chosen to

only) versus dual loop shaping but is typically less sensitive provide the required stability at

(position and rate) for to sensor noise sources. Dual loop has low spin speed and low platform

steady state pointing larger stability margins but requires inertia and to minimize platform

the addition of a more complex SAE and jitter due to friction torque
associated electronics. Dual loop is fluctuations.
less sensitive to friction torque
fluctuations.

Integral versus pro- Integral gives much better reduction in Integral compensation chosen to

portional compensation friction sensitivity for a low inertial minimize friction sensitivity.
platform but requires additional lead Dual loop provides the needed

compensation. Integral compensation stability margin. Offset pointing

typically requires a separate command is also provided by summing

for offset pointing. Proportional torque ahead of the integrator

shaping is conceptually simpler. stage.
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The motor drive circuitry can be configured either as a voltage drive

(which is effectively a speed control) or as a current drive (which is effec-

tively a torque control). The voltage drive is an open-loop torque circuit,

while current drive utilizes negative feedback to deliver a desired torque

independent of speed and armature resistance variations (due to temperature

changes). Voltage drive is potentiallyattractive (in spite of the speed and

temperature dependence) when controlling a small inertia because it provides

speed control of the load inertia which can be utilized for acquisition and

extra damping. This additional damping and the inherent simplicity in the

electronic design using the voltage drive mechanization adjudicates its use.
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APPENDIX C. ATTITUDE CONTROLS AND
MECHANISMS HARDWARE DESCRIPTION

EQUIPMENT CONFIGURATION

The spacecraft equipment configuration for the attitude control function

will be comprised of three redundant dual slit sun sensors, one dual slit star

sensor (each slit independent and functionally redundant), one redundant ADP

electronics unit, one solenoid driver electronics unit (functionally redundant),

one redundant DCE unit, one BAPTA, and one nutation damper. The only
elements not redundant are the star sensor sun shade and optics, BAPTA

bearings and motor magnetics, and the nutation damper. However, due to the

high reliability of these elements, redundancy is not warranted (due to a

significant weight penalty). The electrical cross-strapping scheme. shown in

Figure C-1 provides maximum flexibility and utilization of the proposed hard-

ware. Table C - identifies the preliminary physical characteristics of the

ACMS hardware.

RELIABILITY ASSESSMENT

ACMS achieves a predicted reliability of 0. 9883 for the orbiter and

0. 9995 for the probe bus (Table C-2) based on the estimated parts count and

associated failures rates currently standard within Hughes and the mission

life defined below. The failure rates for electronic components have been

modified by the Hughes experience factor of 0. 606. The "E" factor is an

attempt to reflect the operational experience that Hughes satellites have in

orbit, thereby compensating for the basic inaccuracy of most handbook data.

It is calculated as the ratio of actual part failures in space to the expected

number of failures using the handbook data. This factor is periodically

updated to reflect additional flight experience. The "E" factor is currently
0. 606.

Reliabilities have been calculated based upon the following mission

times:

1) The operational life of the orbiter is 200 days in transit to Venus

and 225 days in orbit

Z) The operational life of the probe bus is 125 days; the operational
life of the probes, both large and small, is 108 days inactive

(launch to separation), 20 days low power mode, and 90 min high
power mode (descent).
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TABLE C-1.. ACMS EQUIPMENT LIST

Number per Size, cm (in.)

Component Spacecraft Mass, kg (ib) (L x W x H) Power, W

Sun sensors 3 0. 1 (0. 2)/unit 4. 1 x 7. 1 x 4.8 --
(1.6 x 2.8 x 1.9)

Star sensors 1 2.5 (5.5) 44.5 x 30.5 x 30.5 1.0
(17.5 x 12 x 12)

Attitude data 2 1.6 (3. 6)/unit 22.9 x 15. 2 x 7. 6 4.0

processor (9 x 6 x 3)

Solenoid drivers 1 1.0 (2.2) 25.4 x 15.2 x 3.8 2.0 (1 percent

(jet and latch valves) (10 x 6 x 1.5) duty cycle)

Nutation damper 1 0. 9 (1.9 58.4 x 2. 5
(23 x 1) diameter

BAPTA (orbital only) 1 5.1 (11.2) 15. 2 dia 30. 5 L 1.0
(6 dia 12 L)

Despin control 2 1.7 (3.7)/unit 25.4 x 15.2 x 7.6 5.0

electronics (orbital (10 x 6 x 3)

only)

Thermal louvers 0.29 (0. 65)/unit 40.6 x 20. 3 x 5. 7

(probe bus) 6 (16 x 8 x 2. 25)

(orbiter) 8

Pin pullers 0. 06 (0. 14)/unit

(probe bus) 2

(orbiter) 1

Bicone deployment 1 0. 9 (2.0) 62.2 x 2. 5

mechanism (24. 50 x 1) diameter
and attachment

(probe only) structure

Magnetometer 1 1.5 (3. 2) 106.7 x 2. 5 (42 x 1)

deployment mechanism diameter and pivot
joint
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TABLE C-2. ATTITUDE CONTROL SUBSYSTEM RELIABILITY

Estimated Reliability

Unit Orbiter Probe Bus

Star sensor 0.9984 0. 9998

Sun sensor attitude data processor
0. 9960 0. 9996

Jet control electronics

Despin control electronics 0. 9963

BAPTA 0. 9976

Nutation damper 0. 99991 0. 99997

Subsystem 0. 9883 0. 99946

Reliability is enhanced by redundancy, cross-strapping, duty cycling

of equipment used periodically, and minimization of single point mission

failures in the proposed design. All electronic units are functionally redun-

dant and conform to the design criteria that no single failure should cause a

mission failure. Where redundancy is not feasible, conservative design

reduces the probability of a single point failure.

SUN SENSOR DESIGN

The sun sensor design for the Pioneer Venus spacecraft consists of

three sun sensor assemblies: an upper sensor assembly, a midrange sensor

assembly, and a lower sensor assembly. The sensor assemblies are

arranged as shown in Figure C-2 to provide signals over the 10 to 170 deg

range of sun elevation angles. Table C-3 summarizes the design.

Each sensor assembly consists of four sensor units (two pairs of

redundant units) on a precision bracket. Each of the sensor units contains

a silicon photovoltaic cell and has a narrow planar field of view of approxi-

mately 90 by 1.75 deg. Two of the viewing planes of each sensor (the i

planes) are aligned parallel to the spin axis while the other two viewing planes

(the L2 planes) are inclined tothe spin axis at an angle of P deg. A separation

angle between the t and 2 planes, e0 , is used in some applications to ensure

that the P pulses always precede the L2 pulses. -This simplifies the data

processing.

C-5



TABLE C-3. SUN SENSOR CHARACTERISTICS

Parameter Upper Sensor Midrange Sensor Lower Sensor

Configuration 900 Elevation

Three dual redundant 90°

sensor assemblies made up
of fan beam sensor units - 12 * Elevation 20

with silicon photovoltaic
cells 90' 2 2

Elevation

Field of View

P, deg 10 to 90 (full FOV) 45 to 135 90 to 170 (full FOV)

10 to 55 (required FOV) 125 to 170 (required FOV)

2, deg 15 to 90 (full FOV) 55 to 125 90 to 165 (full FOV)

15 to 55 (required FOV) 125 to 165 (required FOV)

Accuracy

Azimuth angle (4j), deg 0.25 (3o-) at 55 to 0.20 (3r) at 90 ±35 0.25 (3a) at 125 to

0. 5 (3o) at 10 0. 5 (3r-) at 170

Elevation angle, 1.0 (30r) at 55 to 0.15 (30r) at 90 -35 1.0 (30-) at 125 to
smoothed, deg 0.5 (30) at 15 0. 5 (3cr) at 165

Mass, kg (lb) 0. 091 (0. 2) 0. 091 (0. 2) 0. 091 (0. 2)



The construction details for a sensor unit are shown in Figure C-3.

The narrow planar field of view is defined by inner and outer slits whose

width is adjusted by means of shims. The sensor unit contains an integral

1000-ohm resistor which acts as a load to the silicon cell. The sensor

pulses widen appreciably as the sunline nears the spin axis. An additional

widening effect will be present on this mission as the spacecraft nears

Venus and thus gets closer to the sun. The larger angular size and higher

intensity will result in a larger amplitude and wider pulse. Although the

sun intensity level at Venus is almost twice that at the earth, the resultant

pulse amplitude will not double due to the diode loading effect of the non-

illuminated parts of the cell. The pulse slope near the nominal trigger level

of 100 mV will be more than adequate. The maximum sensor output voltage

due to Venus albedo has been estimated to be 0. 012 V. This level is well

below the nominal trigger level of 100 mV and presents no threat to proper

sensor operation.

The sun sensors design is based on utilizing an existing design devel-

oped for Hughes earth orbit satellites, such as the Intelsat IV and Telesat

communication satellites. The only modification required for the Pioneer

Venus spacecraft will be the mounting brackets.

Sun Sensor Tradeoffs

An analysis was made of sun sensor field of view requirements

necessary to satisfy the mission attitude requirements. The basic conclu-

sions were that the sun sensor system must accomplish the following:

1) Provide sun azimuth reference pulses over a range of sun

elevation angles from 10 to 170 deg relative to the spacecraft

spin axis

2) Provide information from which the sun elevation angle can be

determined over a range of sun elevation angles from 15 to 165

deg

3) Provide full redundancy due to the critical nature of the sun

sensor signals

Azimuth Reference Pulse Sensors

The azimuth reference pulse requirement is the simplest task to fulfill.

The most straightforward method of producing the pulses is a fan beam field

of view sensor using shadow mask techniques and a silicon photovoltaic cell.

The fan beam is nominally parallel to the spin axis. The cell develops a

signal whenever the sun passes through the field of view. For this type of

sensor, the pulses get progressively wider as the sunline nears the spin axis

for a practrical shadow mask size, and multiple cells must be used if large

fields of view are required. There are many variations on the basic technique

(such as designs using pinhole apertures, deposited reticles on glass blocks,

lenses, etc.), but the basic principle of operation is the same. If it is

necessary, the effects of the pulse widening on accuracy can be partially com-
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pensated for by making use of ground calibration pulse data. Even better

compensation can be obtained by incorporating an electronic processing

scheme that provides both leading and trailing pulse edge data. This permits

the center of the pulse to be determined and greatly reduces the effects of

apparent sun size variations and space environment on ground calibration

data.

Another variation on the basic fan beam field of view design is to

use two detectors behind the slit and to sense the null crossing as the beam

of light sweeps across the detectors. Again, there are many variations on

the design involving the use of pinhole apertures, lenses, etc., but the

basic technique is the same. The chief advantage of this null technique is

that the zero crossing is quite insensitive to cosine law effects on amplitude,

apparent sun size variations and other effects. It does, however, result in

a slightly more complicated sensor and processing electronics configuration.

Elevation Angle Sensors

The sun elevation angle sensing requirement is slightly more difficult

to meet than the azimuth pulse requirement, but a variety of methods exist

to accomplish this task. The large field of view requirements make the use

of analog techniques difficult. Simple energy balance types of sensors are not

feasible to provide 0. 25 to I deg accuracy over such a large angular range.

Even if such a large linear range could be obtained, the problems of accurately

predicting the output in orbit would be severe. There is one type of analog

device which should be considered, however. It is a lateral effect photo-

voltaic cell. Such a cell can be designed to put out a signal proportional to

the intensity and position of a light spot on its surface as well as a separate

signal proportional only to the intensity. A long thin cell of this type could

be used to provide position and intensity signals which could be used to

determine elevation angle. However, the wide angular range requirements
would still require very precise calibration to achieve the required accuracy.

There are two types of digital sensors which could be used to fulfill

the sensing requirements. One is a true digital sensor which used an array

of silicon cells and a reticle to produce an 8-bit digital word corresponding

to sun position. The other type is really a quasi-digital sensor in that it

produces two analog pulses whose separation in spin angle can be used to

determine elevation angle.

The most suitable true digital sensor for this task is manufactured by

Adcole Corporation and consists of a sensing head containing 8 digital detectors

and one "command" detector in conjunction with an electronics package. It

provides sun elevation angle information with a resolution of 0. 5 deg and an

accuracy of ±0. 25 deg over an angular range of 128 deg. Thus, two sensor

units would be needed to provide full coverage with a good overlap in the 90-

deg region. The output of the command detector could also be used to pro-

vide the azimuth reference pulse in addition to its other function of commanding
the digital detector readout time.
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TABLE C-4. SUN SENSOR TRADEOFF TABLE

Type of Sensor

Quasi-Digital Fan Beam

Parameter Analog, Lateral Photo Effect True Digital Coded Reticle Field of View

Azimuth pulse Suitable, = 0. 25 deg with Suitable, = 0. 25 deg with Suitable, = 0. 25 deg with

output stability calibration calibration calibration

Elevation Fair; requires extensive Very good; can give reso- Good; central region accu-

accuracy calibration and test. Affected lution of 0. 5 deg and racy very good. Less

by temperature and stray accuracy of 0. 25 deg over accurate than true digital

light sources. the entire field of view. in regions nearer the spin
Unaffected by stray light, axis. Unaffected by stray

light.

Sensor head Detector would require con- Sensor head somewhat Sensor head uncomplicated.

complexity and siderable development effort, complex but is well proven Well proven in flight. Obtain

number needed Would probably use two in flight. Would probably full redundancy with three

redundant heads per spacecraft. use two heads with redun- assemblies.
dancy in central 90 ±53 deg
region.

Electronic Not too complex but would Complex electronics per Very simple. Uses essen-

processing require analog to digital con- sensor head tially existing circuitry.

circuitry version for telemetry
resolution.

Development New Well proven Light

status

Weight Light Electronics processing Fairly light
heavy

Cost Development moderate Nonrecurring low Nonrecurring low

Recurring medium Recurring fairly high Recurring.medium



The quasi-digital sensor uses two fan beam field of view sensors

(identical to those described earlier in the discussion on azimuth reference

pulse generation). One sensing plane is placed parallel to the spin axis (as

in the azimuth reference case) while the other is inclined to the first plane

by and angle P. The spin angle between the pulse produced by each of the

sensor units is a function of the plane inclination angle, P, and the angle

between the spin axis and sunline, y. As in the case of the true digital

sensor, one of the necessary signals produced for elevation angle determina-

tion can also be used as the azimuth reference pulse.

Sun Sensor Selection

The pertinent characteristics of the sun sensor configuration considered

are shown in Table C-4. Any of the three elevation sensors considered also

provide an analog azimuth reference pulse. Since the accuracy of such a

pulse is adequate for the mission requirements (i.e., a more accurate method

such as the null crossing type is not needed), the tradeoff reduces to a choice

between the three elevation sensors. The most straightforward and simplest
method is clearly the quasi-digital. It does not require the somewhat complex

processing electronics used by the true digital nor does it have the calibration

or development uncertainties of the lateral photo-effect device. Its electronics

processing is essentially free, since the angular measurement between pulses

uses circuitry which already exists for other tasks. It also has a very good

flight history, having been flown on all Hughes-built spinning and dual spin

satellites to date with no failures. Thus, this is the chosen configuration.

STAR SENSOR DESIGN

The star sensor design chosen for the Pioneer Venus missions is a

passive star scanner with refractive optics and two long, narrow silicon

photovoltaic detectors. Each detector, in conjunction with the optical system,

forms a narrow fan-beam field of view 1. 0 by 25 deg in size. One of the

field of view planes is parallel to the vehicle spin axis while the other is

canted at 20 deg to that field of view. The center of the field of view is

aligned nominally at 53 deg to the spacecraft spin axis. Figure C-4 shows the

sensor configuration and field of view orientation. The sensor will have a

threshold detection level of +1. 0 silicon magnitude stars giving it the capa-

bility to detect the 25 brightest silicon stars. Table C-5 summarizes the star

sensor design.

The solid state sensor would be anew design, since no existing design

is available which is capable of operating over the wide spin speed range of

operation. The solid state sensor would have two independent detector

channels (one channel for each slit) and each slit could be used for attitude

determination (with the sun sensor).

The block diagram of the sensor electronics is shown in Figure C-5.

Each of the two detector channels is completely redundant except for the

optics and stray light shield. The inputs supplied to each channel of the sen-

sor are:
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TABLE C-5. STAR SENSOR CHARACTERISTICS

Parameter Characteristics Comments

Type of sensor Passive, dual fan beam, beam field of Each field of view electrically
view with silicon photovoltaic cell independent for redundancy

Field of view and orientation 25 deg elevation field of view, 20 deg
cant angle between field of view, optical
axis 53 deg from spin axis

Sensitivity -1.5 to +1.0 magnitude (silicon) stars

Outputs Star crossing pulse when star exceeds Eight step ground commandable
threshold threshold

Star intensity signal proportional to
intensity of brightest target

Accuracy:

Raw azimuth -0. 5 deg (3r-) Smoothing is accomplished by

Smoothed azimuth r0. 17 deg (3o-) includes bias errors ground data processing

Smoothed elevation :0. 7 deg (3-)

Sun rejection For angles greater than 60 deg to the
optical axis

Earth and Venus rejection For angles greater than 35 deg to the
optical axis

Power Less than 1 W per channel

Mass Less than 2.5 kg (5. 5 ib) Includes sun shade
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1) Power

2) On/off command

3) Star threshold command

4) Spin angle gate signal

The output signals supplied by each channel are:

1) Star pulse signal

2) Star intensity signal

Star Threshold Command

The star threshold command is a digital pulse command which is

capable of being set at any one of 8 discrete levels which are proportionally

spaced with respect to star intensity in the nominal sensitivity range of the

sensor. This command will help ensure that output pulse are produced only

on desired targets.

Spin Angle Gate Signal

The spin angle gate signal is a logic command which is ON for a

predetermined portion of the rotor revolution. It is anticipated that the gate

signal will be ON for no more than 10 deg of spacecraft revolution, allowing
star signal detection during only this period. This command, in conjunction

with the threshold command, will help ensure that output pulses are produced

for the desired targets.

Star Pulse Signal

The leading edge of the star pulse signals will determine the azimuth

and elevation of the measured star with respect to their nominal positions

relative to the sensor alignment references. Crossing the slit parallel to

the spin axis will give basic azimuth reference; the time interval between the

crossings of the two slits will give the elevation reference.

Star Intensity Signals

Each channel will provide an analog star intensity signal whose level

is proportional to the intensity of the brightest star above the threshold level

which occurs during the ON time of the spin angle gate.

Baffle Design

A two-stage stray light sheild of the type shown in Figure C-6 is

required to protect a sensor having a 25 deg field of view and a 2-in. diam-

eter optical system from sun interference for Os = 60 deg and planet inter-

ference for Op = 33 deg. The shield must be 8. 7 in. in overall length with

the diameter of the inside edge of the last baffle of the outer stage equal to

9. 2 in.
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Detector Selection

The proposed detector for the solid state star sensor will be made of

silicon photodiodes based on silicon planar diffused oxide passivation tech-

nology.

Star Sensor Tradeoffs

The basic functional requirements for the star sensor system are as

listed below:

1) Provide star pulse information which can be used in conjunction

with the sun sensor outputs to permit the attitude of the space-

craft to be determined (by use of ground-based computer

operations).

2) Provide (with the aid of a spacecraft supplied spin angle gate)

a once-per-revolution star output pulse to be used for on-board

real time operations.

3) Provide appropriate sun, earth and Venus interference rejection.

4) Provide redundant operational modes for reliability purposes.

Since the spacecraft is a spinning vehicle, the obvious choice for the

star sensor task is a static no.-moving parts design. The tradeoff considera-

tions then involve selecting the type of static configuration to be used.

The majority of static sensors flown to date have used a photomulti-

plier tube (PMT) detector. The basic configuration of such a sensor is shown

in Figure C-7. It consists of a stray light shade, an optical system, a

reticle, a PMT, and an electronics assembly containing the power supplies

and the signal processing circuity. The reticle usually contains at least two

slits (one inclined to the other) to provide both azimuth and elevation infor-

mation on a target star. This type of sensor has generally been used to

supply star pulse information for use on the ground (i. e., not in a real time

sense). Several versions of this type of sensor have been flown. The sensor

on the OSO-H satellite is a good example of this type of sensor. It uses a

two-slit reticle and has an elevation field of view of 10 deg. It provides

usuable information on stars down to +3. 5 magnitude.

A static sensor can also be made using a solid state detector. In

this case, the reticle used with the PMT is not needed, since the detectors

themselves can be fabricated in narrow strips to define the field(s) of view

(in fact, a reticle is not only not needed, but is not desirable since noise

considerations make a small detector mandatory). A static sensor using a

solid state detector is shown schematically in Figure C-8. It is, of course,

very similar to the design using a PMT except for the absence of a reticle

and a high voltage power supply and the use of dual signal processing cir-

cuitry. Solid state sensors of this type do not have the wide flight experience

that the PMT devices have. The single field of view silicon detector sensor
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on the Pioneer Jupiter mission and a multiple field of view, cadmium sulphide

detector sensor used on the very slow rotation (i. e., orbital rate) SPARS

payload are instances, however, where mission requirements have made

their use feasible.

The first tradeoff decision to be made is between a PMT type or a

solid state type system. At the present time, the silicon photovoltaic detector

clearly appears to be the best choice* of the solid state types. It will,

therefore, be used in the tradeoff comparison with the PMT detector. The

pertinent features of the detectors are summarized in Table C-6.

As can be seen by Table C-6, the PMT has advantages in the areas

of low internal noise, fast response, and experience. The silicon detector

has advantages in the areas of size, lack of requirement for high voltage,

quantum efficiency, and ruggedness. When comparing sensitivity of detec-

tors, care should be taken with the spectral characteristics of the stars. The

silicon sensor with its sensitivity in the infrared region will result in con-

siderable brightening of cool stars while reducing the brightness of hot stars

only slightly. This characteristic increases the number of stars that can be

tracked with a silicon detector when compared to a PMT for any given magni-

tude. Specifically, to retain detection of 25 stars with a PMT would require

0. 7 magnitude more sensitivity than that of the silicon detector (i. e., twice

the sensitivity).

The way in which these factors interact with the requirements for a

particular mission are somewhat complex. However, a first-order approxi-

mation to the types of sensor requirements each is suited for can be made.

Sensors which must provide high accuracy on very dim stars on fairly rapid

spinning vehicles will probably need to use PMT detectors. Sensors which

have only moderate accuracy requirements on fairly slow spinning vehicles

and do not have a sense very dim stars can use silicon detectors. There

is quite a gray area in between where the choice is not at all clear. For

instance, the use of multiple silicon detectors to divide up the field of view

in small segments can offset many of the advantages of the PMT for some

missions. There will obviously be a point, though, where the resultant

electronics complexity becomes somewhat overwhelming. It is clear though

that if a sensor using silicon detectors can fulfill the mission requirements

without requiring too many detectors, it offers important advantages over a

sensor using a PMT due to weight, power and reliability considerations.

For the Pioneer Venus mission, this is clearly the case. A design

using silicon detectors is capable of meeting the desired performance. Al-

though the performance with a PMT would give higher signal-to-noise levels

without stray light, however, maintaining this improvement in the presence of

stray sunlight would require a better stray light shield than is needed with

the silicon detector. Since there can be two separate detectors for the field

of view, the silicon detector design also easily lends itself to full electronics

redundancy (i. e. , each field of view channel is electrically independent).

Discussed in the performance tradeoffs below
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TABLE C-6. PMT VERSUS SILICON DETECTOR SENSOR
TRADEOFF CONSIDERATIONS

Tradeoff Parameter PMT Detector Silicon Detector

Internally generated noise Very low Fairly high

Size Fairly large - results in large, Small and compact - results in

single detector sensors medium size, multiple detector
sensors

Response time Very fast - microsecond range Basic detector is fast - gener-
ally slow when coupled with
high gain amplifier

Field of View (FOV) Predetermined cathode con- Has large FOV because detec-

figuration make FOV not as tor can be shaped for each slit,
flexible as silicon detector therefore requires less sensi-

tivity to obtain sufficient
number of stars

Spectral range and quantum Visual spectral range, quantum Spectral range in red portion of

efficiency efficiency of approximately visual range and into the near
20% at =0.45 microns for S-20 infrared quantum efficiency of

approximately 707% at = 0. 8
microns

Susceptability to damage Requires sun and possibly planet Requires no protection, has
from high intensity sources protection. Has slow recovery fast recovery time (<8 msec)

time (100 - 300 msec)

Redundancy considerations Generally requires two com- Redundancy (except for optics
plete sensors for redundancy and light shield) can be achieved

in single package

Reliability Requires 1. 5 -2. 5 KV power Separate detectors for each slit

supply plus signal processing make signal processing easier

and pulse train separation
electronics

Weight > 10 lbs. per sensor <5.5 lbs per sensor

Power > 7 watts per sensor <2 watts per sensor (<1 watt per
channel)

Resistance to radiation and Low Good
Magnetic fields

Stray light High light levels can limit Tolerant of high light levels
operation with minimum degradation of

signal to noise

Ruggedness Fragile Rugged

Previous space history Extensive use in space Limited use due to relatively
instruments including star recent development
scanners
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Another important tradeoff consideration is field of view versus

sensitivity. Related parameters are the angle between the field of view and

the spin axis, and stray light shielding. Both small fields of view and small

angles between the field of view and the spin axis will result in the star sensor

seeing less of the celestial sphere during a revolution and thus having to sense

dimmer stars in order to insure coverage for a given orientation. Small fields

of view also improve signal-to-noise ratios and help the stray light shield de-

sign problem. However, detector noise increases roughly as the square root

of the field of view area while the available targets of a given magnitude go up,

on the average, in direct proportion to the elevation field of view. One of the

most severe design problems with any detector system is its ability to reject

targets dimmer than the target star. As sensitivity is increased, the number

of detectable stars increases almost exponentially. A compromise must be

reached between the system sensitivity, signal-to-noise ratio, and stray light

shielding capabilities when selecting the field of view. Based upon the analysis

and experience of the solid state sensor manufacturers contacted during this

study, a single solid state detector can be designed which will reliably detect

+1 silicon magnitude stars for fields of view up to 25 to 30 deg using present

state-of-the-art detector and preamplifier technology. From the results of

the visibility studies herein, a sensor capable of detecting 25 stars (+1

silicon magnitude sensitivity) with a 25 deg field of view will satisfy all of the

mission attitude determination requirements. By using only a few of the

brightest stars it becomes much easier to discriminate against dim background

stars using an adjustable detection threshold setting. Therefore, a solid state

detector having a wide field of view and adjustable detection threshold setting
offers superior star discrimination capability over a narrow field of view PMT

sensor which must detect dimmer stars to obtain the same spacecraft attitude

coverage.

Star Sensor Selection

In summary, the solid state dual slit star sensor design (utilizing slit
redundancy) will weigh approximately 15 lb less per spacecraft, require

approximately 5 W less power, be more reliable (no high voltage stress),
less susceptible to stray light interference, and provide easier dim back-

ground star discrimination than a PMT type sensor (two required). For these

reasons, a solid state star sensor design has been selected for the baseline

design of the Pioneer Venus spacecraft.

Optical Considerations

There are two basic optical systems to be considered: reflective

and refractive. The reflective systems are generally limited in their field

of view unless a curved focal plane can be accommodated. Curved detectors

have been fabricated but these are strictly in the experimental stage and

performance could be marginal. Fiber optics have been used to transmit the

curved field to a flat diode, but light losses in the fiber bundle offset much of

the weight advantage that might be gained by using reflective optics. A very

low f/number must be used to reduce the detector size.

Considering the large field of view and low f/number, a refractive

system was selected to take advantage of its large field of view and the absence
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of spiders or other support structures in the field of view. The absence of

support structures makes this system less susceptible to stray light impinge-

ment problems. The very low f/number (f/i. 0) was selected to minimize

the detector size thus reducing system electrical noise and improving signal-
to-noise characteristics.

Stray Light Rejection/Baffle Design

Rejection of stray light is a major design problem. Stray light from

bodies such as the sun, earth, and Venus entering the optical system is sensed

by the detector and creates system noise seriously affecting star detection,

false alarm rates, and accuracy. There are many different types of baffle

designs which have been proposed and/or used for spacecraft. For this

application, the two-stage baffle with recessed surfaces and baffle rings is

required to assure satisfactory operation to within 60 deg of the sun and 35 deg

from earth and Venus.

Figure C-6 shows the basic design features of such a baffle. All

edges of both stages are, of course, outside the detector field of view so

that they cannot be directly imaged on the detectors. The outer stage of the

baffle is configured so that none of its edges can be seen by optics and so that

no sunlight can impinge directly on the inner stage. The angle Os , which is

defined by the outer stage, is usually considered to be the smallest angle the

sun can make with the optical axis without causing performance degradation.

The angle 8 , which is defined by the inner stage, is usually considered to

be the smal est angle the illuminated limb of a planet can make with the

optical axis without causing performance degradation. Neither of these

angles are exact limits, of course, but they do serve to indicate the rough
criteria used to initially design a shield. Since each length of the inner shield

produces a new size for the entire sheild, the usual design procedure is

to lay out several configurations in order to select one with the best set of

parameters. Large fields of view, large diameter optics and small sun

protection angles all increase shield size with the sun protection angle being
the strongest factor. To protect a sensor having a 25 deg field of view and a

2-in. diameter optical system from sun interference for 8s 
= 60 deg and

planet interference for 8 = 33 deg, the shield must be 8.7 in. in overall

length with the diameter f the inside edge of the last baffle of the outer stage

equal to 9. 2 in. In addition to the shield, careful attention must also be given

to the optics and optics detector housing if good stray light rejection is to be

achieved. Very smooth surfaces on the optics, good cleanliness and careful

attention to sources of internal reflections are all very important.

Detector Selection

The proposed detector for the solid state star sensor will be made of

silicon photodiodes based on silicon planar diffused oxide passivation technology.

Compared with other candidate materials, the silicon photodiode offers the

following advantages:

1) Low leakage current

2) Low noise
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3) Fast response time

4) High quantum efficiency

5) High sensitivity

6) Excellent long-term stability

The silicon planar diffused, oxide passivated photodiode can be easily

fabricated on a silicon wafer using standaridized photolithographic masking

and etching procedures for the sequential metallizing techniques. Large area

devices or a multiplicty of small area devices with suitable leads can be

fabricated readily in the planar device on a single wafer.

The silicon photodiode proposed will be operated in the photovoltaic or

zero biased mode. Operation in the photoconductive or reversed bias mode

did not offer significantly improved performances for the proposed application.

Although the reversed bias mode does reduce the junction capacitance, leakage

currents increase with increasing bias. Guard ring technology is applied to

reduce the leakage current problem at the cost of increased device complexity.

In the photovoltaic mode, the only source of leakage currents is in the bulk

of the device with no surface leakage. Guard rings and bias voltage supplies

are not required.

A major noise source is the temperature dependent Johnson noise

current. If a large load resistor is used with a large junction capacitance, it

appears that the frequency response will be limited. However, the use of

a detector with high junction resistance in combination with a feedback opera-

tional amplifier reduces the Johnson noise to a negligible level while pre-

serving signal amplitude with adequate frequency response.

System Signal Level

The peak signal level at the detector is given by the expression:

-m
I = (2. 51Z) FA'R
p. s

where
F = filter factor at specific vehicle spin rate

A' = effective objective collecting area

m = magnitude of threshold star

Rs = response of detector to 0. 0 magnitude AO star
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The signal current generated in the detector for a 0. 0 magnitude AO star

was calculated to be 0. 489 x 10-12 A/cm 2 of effective objective area. For

an aperture diameter of 5. 1 cm, optical efficiency of 75 percent and maxi-

mum off-axis operation of 16 deg (inclined slit), the effective collecting area
is calculated to be 13. 1 cm 2 . A lower break of 1 Hz and an upper break of
120 Hz was selected as the best compromise of signal versus noise equivalent

bandwidth (NEBW) for system operations over the spin speed range of 5 to 60

rpm. At 15 rpm and 60 rpm the filter attenuation factors are 0. 91 and 0. 70,
respectively. The NEBW is 91 Hz.

The detector current produced by the dimmest star of interest
(M = +1) at a vehicle spin rate of 60 rpm would reach a peak amplitude of:

Ip60 = 1. 79 x 10-1 A

At a spin rate of 15 rpm, the detector peak current would increase to:

Ipl5 = 2. 32 x 10-12 A

System Noise Level

With a silicon detector the basic noise sources are: detector dark
noise, amplifier and feedback resistor noise, detector short noise due to
current flow and excess noise in the detector such as i/f and popcorn

noise. The total system noise is given by:

NS n1/2

where

i = the noise current produced by the individual noise sources

The most serious type of system noise which must be considered in
silicon star sensors is detector dark current noise. The dark noise current
is the rss of the short noise and Johnson or thermal noise. As the bias

voltage of the diode approaches zero (photovoltaic mode), the dark current of
the detector decreases rapidly and the equivalent impedance of the diode
decreases, which effectively results in a decrease in shot noise and an
increase in thermal noise. There is a point, generally around 100 my bias,
where the combination of shot noise from the dark current and thermal noise

of the diode is at its minimum. This point can have a noise level of 25 per-
cent less than the zero bias photovoltaic mode. Extrapolation from detector
(United Detector Technology) data yields an estimate of dark current noise
0. 198 x 10-12 A at 400 C with the 100 mV bias improvement.
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The noise generally associated with the system amplifier is

predominantly the Johnson noise of the feedback resistor used by the pre-

amplifier operational amplifier. This noise can be reduced by increasing

the value of the feedback resistor. Using a resistor value of 200 M2 (no

undue sacrifice in reliability or ease of manufacturing), the amplifier noise

contributions is less than one-half the value of the dark current noise or

0. 094 x 10- 12 A.

Detector current is generated by the various sources of stray light

impinging on the detector such as solar or planet albedo, star background

and signal current. The two- stage baffle design will be configured to limit

stray light current to that which would be produced by a -1. 0 magnitude star.

This light would be in the form of a very long time period light signal occurring

one time each revolution. Because of the long time period, it is assumed that

the condition is steady state and causes a shot noise effect in the photodiode.

This stray light noise is calculated to be 0.021 x 10-12 A or 10 percent of the

detector noise. Detector current due to star background energy can be calcu-

lated by assuming average densities for different parts of the celestial sphere.

The sky background light level is usually expressed in terms of equivalent

10th magnitude stars per square degree. In the brightest part of the Milky

Way the level can go as high as 700. Assuming this level for the entire 1. O0

by 25 deg field of view gives 700 x 25 = 17, 500 equivalent 10th magnitude

stars. This worst case would produce a signal equal to a -0.6 magnitude

star 10 - log 17, 500) Since it was previously shown tht stray light equal to

a - 1. 0 magnitude star had little effect, this lower value of noise will be

neglected. The detector shot noise generated by the signal current from the

minimum detected star, 1. 0 magnitude, can be neglected for the same reason.

Two forms of excess noise are sometimes found in silicon photodiodes.

One is burst (also known as popcorn, boxcar and bistable) noise and the other

is flicker or 1/f noise. In burst noise, the current through the diode abruptly

and randomly changes between two or more discrete values. This burst noise

is seldom found in individual devices of the type proposed and -can be eliminated

by device selection. The 1/f noise is associated with the diode leakage current.

Actual measurements on typical photodetectors show them to be 1/f noise free

down to 0. 1 - 1. 0 Hz. To avoid this type of noise in the system, a lower fre-

quency cutoff of 1 Hz was selected.

The total system noise is the rss of the detector noise, amplifier/

feedback resistor noise and background noise, i. e., INS = 0. 220 x 10-12 A.

System Signal- To-Noise

At a spin rate of 15 rpm, the peak signal-to-noise for a +1 magnitude

star will be:

Ip 15
S/N 1 5

INS
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SIN 1 5  2.3Z 1 0.6
15 0.22

At a spin rate of 60 rpm, the peak signal-to-noise for a +1 magnitude star

will be:

1. 79
S/N - 79 - 8. 2

60 0. 22

Performance

There are three basic performance criteria: angular accuracy,
probability of detection, and false alarm rates.

Angular Accuracy

Angular accuracy is associated with: alignment stability, threshold

effects, elevation versus azimuth measurements, and angular jitter caused

by noise. Alignment stability of well under 0. 05 deg is easily maintained

so this item is not a problem for this application. Threshold effects cause

the apparent position of the star to move if a fixed threshold and a simple
leading edge trigger method is used. This error is reduced to a reasonable

level by triggering on a fixed percentage (usually 50 to 70 percent) of the

peak star, since the sensor will generally be viewing isolated targets when

high accuracy is of concern.

The azimuth angle measurement accuracy is a direct function of the

measurement of when the star crosses the vertical detector. The elevation

accuracy depends on the time measurement between the crossing of the

canted and vertical detector. The ratio of the azimuth error of angular

measurement to elevation error is approximately equal to the tangent of the

cant angle. For the chosen configuration, this ratio is 0. 364. Since there

is uncorrelated random noise on each star crossing, the effect of noise on

the two required star crossings used for elevation determination isN2-

greater than for azimuth. Therefore, the error in elevation due to noise is

3. 9 times the error in azimuth due to noise. Systematic bias errors can be

determined by ground software and applied as correction factors to smoothed

data. Noise on the raw star signal causes jitter on khe star output pulse.

The 3a- angular jitter can be related to the signal-to-noise ratio and input filter

factors by the following:

peak signal out of the filter
3o7 angular jitter peak signal-to-noise x signal slope

Elevation. Azimuth error (la)_ 3.9 • Az (1(r)
Elevation error (10-) = Tan 20=
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For the selected break frequencies, filter factors and signal-to-noise ratios,

the 30- angular measurement errors at 15 rpm and 60 rpm are 0. 15 and 0. 36

deg, respectively.

The above calculations are for the 3r- angular error of a single sample

of data. During the mission, at least 25 samples of data will be used in

attitude determination calculations. This will result in a reduction of appoxi-

mately 1 in the 3c- dispersion; i. e., for 25 samples the 3o- azimuth errors

at 15 rpm and 60 rpm are 0. 03 and 0. 07 deg, respectively. The corresponding

elevation errors due to azimuth angular jitter would be 0. 12 and 0.28 deg.

Probability of Detection and False Alarm Rates

The probability of detection is represented by the area under the

right-hand curve minus the shaded area to the left of VT in Figure C-9, while

the probability of a false alarm is represented by the area of the left-hand

curve which lies to the right of VT. If the threshold is set at 70 percent of

peak signal, the probability of detection under the worst case spin rate of

60 rpm (S/N = 8. 2) would be 99. 3 percent. At a spin rate of 15 rpm (S/N =

10. 6) the probability of detection would be 99. 93 percent. With the threshold

set at 70 percent of peak signal under the worst case signal-to-noise (8.2),

the false alarm rate (FAR) is less than one in every 10, 000 revolutions. If

the threshold is set at 50 percent of peak signal at 60 rpm, the FAR is ~1 in a

100 revolutions. If the spin angle gate is set to allow signals for only 10 deg

per revolution, the probability of any false alarm is further reduced.

Proposed Designs from Vendors

The proposed Honeywell system would use a 1.5 in. diameter f/0. 86

refractive system with a single stage baffle. A V- slit silicon detector, 25

by 1. 5 deg would feed the dual FET, operational amplifier combination. The

system would weight 3.8 lb including the sunshield, and use approximately

1. 0 W of power. All mission parameters will be fulfilled. Honeywell has

designed and fabricated the Canopus tracker for the Mariner Mars '69

scientific flyby. This system is a photomultiplier type system. An opera-

tional silicon star sensor has been built under Honeywell funding with the

capability of tracking 4th magnitude stars. This system has a 5 in. diameter

objective and a total field of view of 6 deg. Presently they are under contract

to supply solid state silicon star scanners with detection capabilities of 3. 6

silicon magnitude and weighing 7. 0 lb or less (including a 3. 0 lb sun baffle).

Ball Brothers Proposal

The proposed Ball Brothers system would use a 2.0 in. (50 mm)

f/l. 0 refractive system with a two-stage sun shade. A V-slit silicon detector,

25 by 0. 5 deg, would feed the systems dual preamplifiers. The system would

weigh 5. 2 lb including the sunshade, and use the proposed Pioneer Venus

system. The field of view is similar, being 40 by 0. 5 deg. The silicon detec-

tor was made of low resistivity bulk material to improve the system's resis-
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tance to radiation. Because of the high radiation expected on the Jupiter
mission, great effort was expended to protect against these radiation flares.

The Pioneer Venus mission will not encounter the radiation level expected

from the Pioneer Jupiter mission. Degradation of signal-to-noise from

reflections off visual particles passing the spacecraft was very much less

than expected and was not a major factor in the mission. The TRW system

is designed to detect only the bright star Canopus (-1. 0 silicon magnitude)

A spin angle gate is used to reduce the false alarm rate. The TRW system

uses a Cassegrain Bauers system with a 2.5 in. reflective objective. An

optical fiber bundle is used in the spherical focal plane to bring the light

to the silicon detector. The optical efficiency of the overall system is down

around 30 to 40 percent. TRW felt that a solid state silicon detector is

feasible, although the 4. 0 lb weight limit will most likely have to be increased

to include an adequate baffle to track within 60 deg of the sun and 35 deg from

earth and Venus.

PROBABILITY DENSITY

NOISE DISTRIBUTION SIGNAL AND
NOISE
DISTRIBUTION

YOLT -- T

(n - S/N) A

FIGURE C-9. PROBABILITY OF FALSE ALARM AND SIGNAL DETECTION
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ATTITUDE DATA PROCESSOR DESIGN

The attitude data processor (ADP) is a digital electronics unit. Two
redundant units are used in each spacecraft.

The ADP electronics unit will be a new design due to the particular
operational requirements of the Pioneer Venus mission. However, the
designs of many of the functional blocks, such as the sensor buffer circuits,

phase lock loop, command decoder logic, crystal controlled clock and power

supply, are derived from existing Hughes designs. The ADP provides the

data processing for both the sun and star sensors. This eliminates duplication
of time interval measurement electronics in each sensor; thus, resulting in a

minimum cost design. Table C-7 summarizes the characteristics of the ADP

unit. The ADP unit block diagram is shown in Figure C-10. It has been
partitioned into the following subunits:

1) Inertial reference generator

2) Attitude sensor processor

3) Jet control electronics

4) Input/output electronics

Inertial Reference Generator

The inertial reference generator contains the following blocks:

1) Phase locked loop

2) Sun sensor buffering

3) Star sensor buffering

4) Star gate 1 logic

5) Star gate 2 and star advances logic

6) Angle delay generator

Phase Locked Loop

The phase locked loop (PLL) receives as its input the sun pulse or the

star 1 pulse,as commanded,for use as the selected inertial reference (SIR).
The following outputs are available from the PLL:

1) Fs (which is the PLL output at the SIR reference frequency and
phase)
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TABLE C-7. ATTITUDE DATA PROCESSING ELECTRONICS
CHARACTERISTICS SUMMARY

Physical Characteristics

Parts count 200 integrated circuits; 300 discretes

Weight 1. 6 kg (3. 6 Ib)

Size 23.1 x 14.7 x 6.9 cm(9.1 x 5.8 x 2.7 in.)

Average power dissipation 4 W JCE ON; 3.7 W JCE OFF

Performance

Inertial reference generator (phase lock loop)

Phase locked loop maxi-

mum quantization 12 bits

RPM range 4.4 to 70 RPM(commandable in 4 ranges)

Delayed SIR range 0 to 360 deg

Delay quantization 10 bits

External outputs (fs = spin rate clock)

To DCE Fs, 2 1 2 Fs

To science Fs, 2 1 0 Fs

To small probe release Delayed SIR

Attitude determination (time interval measurements)

Clock rate 2 kHz

Maximum range 16 bits

Inputs Sun pulses, star pulses, MIP

Jet control electronics

Number of axial jets 3

Number of radial jets 4

Firing modes Angle, time

Angle mode pulse widths 30 ms 1i and 117 ±3 ms

Countdown logic 12 bits
12

Angle mode 2 revolutions
11

Time mode 2 seconds

Command

Magnitude word
commands 6 words of 10 bits each

Pulse commands 7

Telemetry

Digital telemetry 9 words of 8 bits each

Analog and bilevel TBD
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2) 210 Fs
3Multiples of the reference frequency

3) ZZFs

4) Gate output at the reference frequency starting at 355 deg and
ending at 5 deg.

5) PLL loss of lock (when the phase lock is lost).

The PLL samples the error between the SIR and Fs pulses once per

revolution. This voltage is held and applied to the loop shaping network for

the complete revolution. The shaping network, in turn, drives a voltage
controlled oscillator (VCO) which produces 212 Fs. The 212 is divided down

to provide 210 Fs and Fs. Any error between the Fs and SIR changes the

VCO frequency until both signals are phased and frequency locked.

When the input reference is missing during a revolution, the error is

set to zero for one more period as this absence can be caused by noise,

particularly on stars of weak amplitude. Several consecutive misses will

cause the loop to try to lock to any reterence and produce the PLL loss of

lock signal which, in turn, will stopany jet firing. The PLL loss of lock

signal is provided to telemetry as is the count of the number of times SIR

was missed since the last telemetry sample.

Sun Sensor Buffering

The sun sensor buffer circuits process the P and 2 signals from any

of the three pair of sun sensors by amplifying, shaping, and threshold detec-

ting. Three bits of a magnitude command selects one of three available pairs
of sun sensor slits.

Star Sensor Buffering

The star sensor buffer circuits selects the outputs of two star sensors

slits (P =, P'*2) for data processing. The star sensor buffer also provides gate 1

(SIR gate) to the L Pl sensor slit. The sensor output occurring in gate 1 is

called "Star i. " Gate Z (delayed gate) is provided to either star sensor the

4:* or L=*2 slit as selected by ground command. The sensor output occurring

in gate 2 is called "Star 2. "

Star Gate 1 Logic

The star gate 1 logic accepts the star 1 pulse and the gate signals to

produce the gated star signal which may be used as selected inertial reference

(SIR). The gate also produces an inhibit signal which prevents the PLL from

updating its output frequency if no SIR is detected during the angular period of

-5 to 5 deg. When the SIR is missing in several consecutive revolutions, the

PLL loss of lock signal is produced, and the inhibit signal removed.
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Star Gate 2 and Star Advance Logic

The star gate 2 logic accepts the delayed gate produced by the delay
logic and the star sensor output pulse and provides a gated star 2 output.
A ground command which controls sensor slit is gated for attitude data

measurements The star advance command causes the gated star pulse
occurring in gate 2 to reset the phase of the PLL to zero, thus repositioning

the star gate 1 to accept the star pulse previously occurring in star gate 2 as

the new SIR; i. e., advancing the phase lock from star 1 to star 2.

Angle.Delay Generator

The angle delay generator may be used to generate the star 2 gate
start angle or the jet fire start angle or small probe release signal. The
10 bit delay word is stored in a delay register. At zero angle, the delay
word is transferred to a ripple counter which counts 210 pulse from PLL.

A first pulse is produced at the commanded angle (0) and a second pulse

( + 180 deg) is produced 180 deg after the first pulse. The first pulse is

used by the star 2 gate and sent to the small probe release logic. Both

pulses are sent to the angle logic in the jet control electronics.

Attitude Sensor Processor

The attitude sensor processor (ASP) has two blocks:

1) The attitude measurement electronics

2) The ASP control

The attitude measurement electronics is basically a ripple counter

which counts clock pulses between various sensor pulses inputs as controlled

by the ASP control. The clock rate is 2 kHz and the measured pulse interval
data is parallel transferred to a shift register and read serially onto the

telemetry line. The ASP control is a two state counter which cycles through
the following sun and star modes:

Sun Mode Star Mode
Counter State Measurement Measurement

1 - Select 1 '* -Select 1

2 -- Select 2 * - Select 2

Select 1 and Select 2 are independently determined by a magnitude
command word to be any of the following: P, L2, *, '--2 or MIP. The
control counter mode and selected star pulse are added as an address to the

measured data.
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Jet Control Electronics

The jet control electronics (JCE) has the following component blocks:

1) Jet select and firing

2) Enable logic

3) Angle logic

4) Countdown logic

Jet Selector and Firing and Enable Logic

The jet selector selects by ground command any or all of the three

axial (two axial on the probe) and four radial jets. Ground command selects

whether the jets are fired from pulses from the angle logic or continuously

for a commanded time. The jets can be fired at the commanded delayed angle

0 or (if two pulse mode is commanded) at 8 and also at 8 + 180 deg. The

enable logic stores the time/angle command and enables the appropriate firing

bus line. The enable logic also switches power to the rest of the JCE. Power

is turned on only by a "JCE ON" pulse command. Power is turned off by a

"JCE OFF" pulse command, a PLL loss of lock signal or completion of the

firing sequence. The enable logic is set to the disable state at power turn on

and can only be enabled by a JCE start pulse command.

Angle Logic

The angle logic produces pulses 30 or 117 ms wide at the fire angle

generated by the delay generator. The pulse width is commanded by ground

command.

Countdown Logic

The countdown is a 12-bit counter which counts either 0.5 sec clock

time pulses or the number of 8 pulses fired. The counter is preset with a

number representing the desired number of pulses fired or the desired

length of time. The counter is started by a "start" pulse command and ends

when the full count has been reached. An initialization signal or a loss of

PLL lock will also stop the execution of a maneuver in progress.

Input - Output Electronics

This subunit contains the following blocks:

1) Command distribution

2) Telemetry processing

3) Power conditioning

4) Clock
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Command Distribution

The command distribution (CD) receives the commands sent to the

ADP from the command subsystem and generates the proper signals to

enable the distribution of these commands to their destination. The magni-
tude commands are received serially and transmitted in parallel to subunits.

Pulse commands are buffered by the CD.

Telemetry Processing

The telemetry processing collects the digital telemetry lines through-

out the unit and sends out the data serial format compatible with the telemetry

subsystem. Analog telemetry is sent directly to the data subsystem.

Power Conditioning

The power conditioning subunit performs the following functions:

1) Generates several regulated dc voltages

2) Protects the unit from bus variations and bus transients

3) Separates power and signal returns

4) Provides power on/off buffering and switching

5) Provides failure protection (overvoltage and undervoltage
protection, current limiting and fusing)

The power is turned on and off by pulse commands.

Attitude Data Processor Tradeoff Summary

The basic tradeoffs in the electronics mechanization are summarized

below. No tradeoffs were performed where the requirements lead to a single

simple mechanization. Tradeoffs on the detailed circuit design are beyond
the scope of this study. All factors are stated as a percentage of a single
baseline ADP unit.

Phase Lock Loop

Factor Analog (Baseline), percent. Digital (Alternate) percent

Weight 15 25

Failure rate 10 25

Risk Low Low

Cost 10 25

Performance Meets specification Better
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Delay Gate for Star, JCE & Probe

Factor Shared (Baseline), percent Separate (Alternate), percent

Weight 4 10

Failure rate 6 15

Risk Same Same

Cost 5 12

Performance Meets specification More flexible

Logic Components Selection

(Baseline) (Alternate)
Factor Standard TTL, percent Custom MOS LSI, percent

Weight 40 20

Failure rate 50 25

Risk Low High

Cost 40 High development

Performance (LSI is difficult to change for requirement changes)

SOLENOID DRIVER ELECTRONICS UNIT DESIGN

The solenoid unit (one per spacecraft) provides drive power for the
reaction control jets and latching valves. Properly timed command signals
are provided by either of two ADP (JCE) units. The latching valve commands
are generated in the command decoders (command subsystem). Each latch-
ing valve driver consists of one ON and one OFF driver.

To preclude a single component failure from inadvertently firing a
jet, series redundancy is incorporated in the solenoid drivers. Each driver
consists of two power transistors in series, each with its own predriver
circuitry. Surge suppression diodes are series-parallel redundant. Design
simplification is achieved by making all drivers identical. A typical driver
circuit is shown in Figure C-11. The solenoid driver design has been space
flight proven on several Hughes built satellites, i. e., Intelsat IV, and Telesat.

The solenoid driver electronic unit design is a modification of the
Intelsat IV satellite design. The modification will require minor logic changes
and the addition of one driver circuit for the orbiter spacecraft. Table C-8
summarizes the characteristics of the solenoid driver unit.

Solenoid Driver Tradeoff Summary

Three basic configurations were considered for the solenoid driver
mechanization (seven jet valve drivers and four latching valve drivers).
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TABLE C-8. SOLENOID DRIVER UNIT CHARACTERISTICS SUMMARY

Physical Characteristics

Parts count ICs; discretes

Weight 1. 0 kg (2. 2 Ib)

Size 25.4 x 15. 2 x 3.8 cm

(10 x 6 x 1. 5 in)

Power 0. 05 W (nominal) plus 3. 0 W/active
jet

Performance

Number of drivers Seven jet valve

Two latching valve ON

Two latching valve OFF

Electrical characteristics, each driver

Output current 1. 0 A maximum

Bus voltage drop 3. 0 V maximum at 1. 0 A

ON/OFF delay 150 sec maximum

Rise/fall time 1. 0 ms maximum

They are as follows:

1) Eleven identical two transistor (redundant drivers similar to

Intelsat IV/OSO (22 power transistors).

Weight 2.0 lb

Standby power 33 mW

Advantage. High reliability, lowest risk and development

cost

Disadvantage. Weight and power
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2) Four redundant latching valve drivers, nonredundant jet valve
drivers, with two line switches (17 power transistors).

Weight 1. 89 lb

Standby power 18 mW

Advantage. Lower weight and power than (1)

Disadvantage. Additional commands for line switches,
less redundancy

3) Eleven identical two-hybrid drivers mounted in ADP unit.

Weight 1. 0 lb
(added to ADPs)

Standby power 33 mW

Advantage. High reliability, lowest weight

Disadvantage. Requires development of hybrid and
mounting technique, highest risk, long development time.

Configuration (1) was chosen as the baseline on the basis of greatest
redundancy at the lowest risk and cost.

DESPIN CONTROL ELECTRONICS (DCE)

The despin control electronics (DCE) uses shaft angle encoder (SAE),
master index pulse (MIP) and attitude data processor (ADP) pulse trains to
provide motor drive signals which point the orbiter high gain antenna towards
the earth. The DCE description has been partitioned into the following topics:

1) Position loop and sector signal processing

2) Rate loop signal processing

3) Ground command torque bias

4) Motor drive operation

5) Failure detection/correction logic
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Position, rate, and command bias capability was covered in Subsection 5. 4.

To facilitate understanding of the despin control system. Items 4 and 5 are

covered below.

Motor Drive Operation

The baseline motor is a dc brush motor with KT = 0.9 ft-lb/A and

motor resistance of 45 ohms. The motor driver will be a voltage controlled

voltage source. The output bridge is able to apply voltage of either polarity
to the motor. The motor driver will be current limited to protect the elec-

tronics and brushes from a shorted motor coil. Each unit will drive its own

set of motor brushes.

Failure Detection/Correction Logic

A relative rate of the wrong polarity will be detected with a MIP 2

input a few deg from the MIP, and corrective torque applied through the rate

loop. When too large a relative rate of either polarity is detected, the unit

will be shut off.

Overvoltage and undervoltage detection in the power supply can turn

the unit off and prevent possible spurious operation.

Despin Control Electronics Characteristics Summary

Physical Characteristics

1) Parts count =125 integrated circuits
=520 discretes

2) Weight 3.7 lb

3) Size 10. Ox 5. 8 x 2. 7 in.

4) Average power dissipation 3.3 W with motor driver off
5 W with motor driver at 0. 05 ft-lb

friction torque

5) Peak power dissipation 13 W peak

Electrical Characteristics

1) Position loop gain 0.5 ft-lbs/rad

a) Position loop
quantization 0. 176 deg
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b) Position loop range +11. 25 deg (+0. 098 ft-lb)

c) Position loop sample
rate 16 x (spin speed)

d) Position integrator
gain 0.05 ft-lb/rad/sec

e) Ground command
pointing quantization 0. 352 deg

2) Sectors 16 sectors of 22. 5 deg

ft-lb*
3) Rate loop gain 3 rad/samplerad/sample

a) Rate loop quantization 0.00153 rad/sample

b) Rate loop range +0. 046 rad*/sample (+0. 147 ft-lb*)

c) Rate loop sample rate 128 x (relative rate)

4) Ground command torque
quantization 0. 0094 ft-lb

+0. 15 ft-lb

5) Ground commands 3 magnitude
7 pulse or bit

6) Telemetry outputs 2 analog
1 bilevel

7) Reference inputs Fs

212Fs

MIP

SAE

MIP 2

Despin Control Electronics Tradeoff Summary

The basic tradeoffs in the electronics mechanization are summarized

below. These tradeoffs only consider the electronics design and not the

sensor or motor complexity. No tradeoffs were performed where the require-

ment led to a single simple mechanization. The factors below are stated as

a percentage of a single baseline DCE.

These may be doubled by ground command.
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Electronics For Motor Types

(Baseline) (Alternate)
Factor Brush Motor, percent Brushless Motor, percent

Weight 10 30

Failure rate 7 20

Risk Low Low

Cost 8 25

Performance - 20 more power

Motor Crosstrapping

(Baseline) (Alternate)
Redundant Brushes, Relay Switching,

Factor percent percent

Weight 0 15

Failure rate 0 5

Risk Low Low

Cost 0 5

Performance --

Encoder for MIP and SAE

(Baseline) (Alternate)
Optical Encoder, Magnetic Encoder,

Factor- percent percent

Weight 4 13

Failure rate 4 15

Risk Low Low

Cost 5 15

Performance Noise problems

Logic Component Selection

(Baseline) (Alternate)
Standard TTL, Custom MOS LSI,

Factor percent percent

Weight 25 10

Failure rate 60 15

Risk Low High

Cost 35 High development

Performance LSI is difficult to modify for control parameters
which typically change late in the program.
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Analog Versus Digital Processing

The most basic tradeoff in the design of the DCE electronics was
whether the position and the rate loop processing shall be performed with
analog or digital signal processing circuits. The accuracies and sample
times are not as critical as they have been in previous Hughes DCE designs,
thereby making the analog approach seemingly attractive. However, analog
approach for the error processing was discarded because of the large spin
speed range which yielded a loop gain which was inversely proportional to
spin speed. Thus, in order to achieve the necessary stability margins over
the entire spin speed range, numerous commandable gain changes would have
to be incorporated into the analog error processing design. This, in turn,
results in a higher parts count, higher cost and lower reliability. The digital
approach chosen varies the error sample period with the spin synchronous
clock from the phase lock loop, therefore, maintaining a constant gain with
spin speed.

BEARING AND POWER TRANSFER ASSEMBLY

The BAPTA provides the mechanical and electrical interface between
spinning and despun sections of the spacecraft; its role, therefore, is both
structural and functional. The assembly, shown in cross sectional view
(Figure C-12) consists of four major subassemblies.

1) Brush motor assembly (provides despin control torque)

2) Main bearing assembly (provides relative rotation)

3) Master index pulse generator (MIPG) and shaft angle encoder
(SAE) (provides relative azimuth angle data)

4) Electrical contact ring assembly (ECRA), provides electrical
power across the spinning/despun interface.

The BAPTA design is the result of extensive experience in the design,
fabrication, test, and successful orbital operation of high reliability despin
bearing assemblies for Hughes Tacsat, Intelsat IV, and Telesat Domestic
and Military Satellites. Design characteristics of the BAPTA are summarized
in Table C-9 for the one motor design criteria and Table C-10 for two motor

design criteria.

The BAPTA design minimizes the use of screw-threads, screws, and
lock wire within the spinning housing structure. Where their use is unavoid-
able, integrally machined bosses are employed to ensure entrapment of
metallic chip debris in blind (nonthrough) threaded holes.
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FIGURE C-12. BAPTA SINGLE MOTOR DESIGN



TABLE C-9. BAPTA DESIGN CHARACTERISTICS -

SINGLE MOTOR DESIGN CRITERIA

Parameter Capability

Bearings:

Type Angular contact, 40.0 mm bore,
16 balls 5/16 in. diameter, 440C
CEVM material, Class ABEC 9,
Grade 5 balls

Loads (static)

Radial 2900 lb.

Axial 4120 lb.

Motor:

Peak torque, 24V, 0 rpm 0.49 ft-lb

BAPTA friction torque, 0.10 ft-lb (at 35 rpm and 30 'F)

maximum

Torque margin 4 to 1 (minimum volts, maximum
friction)

Torque sensitivity (KT) 0.92 ft-lb/A ± 10 percent

Back EMF (KB) 1.248 V/rad/sec ± 10 percent

Motor type Brush commutated dc torquer,
dry lubricated brushes (Boeing
046-45 compact matl)

Speed range (w s ) 0 to 35 rpm

Pulse generators

MIPG Single pulse/rev

SAE Shaft angle encoder (128 pulses/rev.)

Rotational sense Direction readout capability

Pulse output =2V across 10 KQ resistor

Type Solid state, light emitting diode

ECRA

Signal rings Two circuits 1A at 75 A/in2

Power rings Three circuits per brush

Physical Data

Total weight <11.2 lb. (incl 0.70 lb. coax-cable)

Size =9.3 length x 6.5 diameter
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TABLE C-10. BAPTA DESIGN CHARACTERISTICS -

REDUNDANT MOTOR DESIGN CRITERIA

Parameter Capability

Bearings:

Type Angular contact, 40.0 mm bore,
16 balls, 5/16 in. diameter, 440C
CEVM material, Class ABEC 9,
Grade 5 balls

Loads (static)

Radial 2405 lb.
Axial 4120 lb.

Motor:

Peak torque, 24V, 0 rpm 0.30 ft-lb per motor

BAPTA friction torque, 0.15 ft-lb (at 35 rpm and 30'F)

maximum

Torque margin 2 to 1 per motor (minimum volts,
maximum friction)

Torque sensitivity (KT) 1.16 ft-lb/A ± 10 percent

Back EMF (KB) 1.57 V/rad/sec ± 10 percent

Motor type Brush commutated dc torquer,
dry lubricated brushes (Boeing
046-45 compact matl)

Speed range (w s ) 0 to 35 rpm

Pulse generators

MIPG Single pulse/rev

SAE Shaft angle encoder (128 pulses/rev.)

Rotational sense Direction readout capability

Pulse output =2 V across 10 K resistor

Type Solid state, light emitting diode

ECRA

Signal rings Two circuits 1 A at 75 A/in2

Power rings Three circuits I per brush

Physical data

Total weight <13.4 lb. (incl 0.70 lb. coax cable)

Size =9.3 length x 6.5 diameter
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The bearings, preload spring and assembly housing/shaft are designed

for adequate structural stiffness to attain acceptable dynamic response of the

supported spacecraft sections during launch accelerations. Bearing suspen-

sion and preload design compensate for local thermal gradients over the

mission operating temperature range, to minimize frictional torque variation.

The component tradeoffs performed involved a brush versus brushless

motor study and several types of shaft angle encoders. The tradeoff study on

both of these items is presented in Tables C-ll and C-12, respectively. The

detail rationale for the selection of the brush mode and optical shaft angle

encoder is given in the Tradeoff Section.

Brush Motor Assembly

The brush motor assembly employs a single brush commutated dc

torque motor as the baseline design. As mentioned previously, a brush motor

assembly employing two brush commutated dc torque motors was considered

for reliability considerations. Both designs are presented herein with em-

phasis on the single motor design. These direct-drive torquers are particu-

larly suited to high torque at low speed applications. They provide a large

torque-to-inertia ratio at the load shaft, high acceleration capability, high

coupling stiffness, and high mechanical resonant frequency.

The motor selected for the low inertia control system resulted from

an optimization study/evaluation of available direct-drive dc torque motor

candidates. The motor design criteria are as follows:

1) Minimum bus voltage = 26 Vdc

2) Bus to motor voltage drop = 2 Vdc, maximum

3) Maximum motor speed

required = 35 rpm = 3.66 rads/sec

4) BAPTA system friction,
maximum (magnetic +
coulomb + viscous) at

35 rpm, and initial 0. 10 lb-ft (0. 15 lb-ft for

temperature = 300F two motors)

5) At minimum bus voltage, the motor shall be capable of providing

torque equal to 4 (2 for motor case) times the maximum system

friction torque.
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TABLE C-1l. BAPTA MOTOR TRADEOFF SUMMARY

Characteristics Brush-Type Torquer Brushless-Type Torquer

Wear Brush-wear small and None
predictable

Mechanical Low-commutation brush friction None

friction

Torque ripple =5 percent operating torque =Z percent operating
torque

Motor drive Relatively simple Complex

electronics Mass 0.45 kg (1.0 lb)/ Mass = 0.91 kg (Z. 0 lb)/

spacecraft spacecraft

Cost = 20K/spacecraft Cost = 50K/spacecraft
20 percent higher power
dissipation

Motor cost ratio 1 1

Motor Available Available

availability Off-shelf designs can be Telesat motor is capable

modified to suit of modification

Failure mode Winding short/open Winding short/open
brush/commutator failure

Motor mass 0.98 kg (2. 15 lb) 1. 22 kg (2.70 ib)

Motor 0. 994 (600 failures/109 h) 0. 9994 (74 failures/109 h)

reliability

Historical Surveyor mechanicms Intelsat IV 7 yr mission

experience TACSAT 3 year mission lasted (4 spacecraft in orbit)

3.8 years Telesat 10 yr design
(2 spacecraft in orbit)

HS-331 I1 year mission

(OSO) 4 year design
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TABLE C-12. SHAFT ENCODER TRADEOFF SUMMARY

Optical Encoder, with Gallium Magnetic Encoder Employing Magnetic Encoder Employing

CharacteristiGs Arsenide Emitter-Detector Passive Pickup Active Pickup Mechanical Encoder

Wear None None None Yes

Failure mode Power supply emitter or detector Winding open or short Winding open or short, power Wear of contacts (good

supply only to 107 revolutions)

Friction or drag None Not measurable Not measurable Small

HAC historical None space qualified for NASA HS312, 318, 333, 331 None - Extensive aircraft engine None

experience usage

Availability in this Yes Yes Yes Yes

size

Power requirement =0. 15 W for three light sources None 0.01Z W for three pickups Friction torque

(0. 05 W each) dissipation, contact
current

Detector weight, kg(lb) E = 0. 14 (0.30) = 0. 51 (1.13) = 0. 18 (0.37) - 0.06 (0. 13)

Commutator weight, Disc = 0.11 (0.25) Serrated annulust 0.45 (1.0) Serrated annulus: 0.36 (0.8) Commutator disc

kg (lb) (ferromagnetic) (ferromagnetic) approximately 0. 1 (0.6)

Installed total Generous separation between disc Annulus plus three pickups Annulus plus three pickups Brush plus disc

weight, kg (lb) and detector: no bearing or cou- = 1.02 (2.25) = 0.57 (1.25) 0.15 (0.35)

pling required. Weight = 0.27(0.60)

Output 2 V pulse across a 10KQ resistor 0.050 V at 4 rpm, 0.750 V at 0.2 to 0.5 V (peak-peak) at Depends upon contact

60 rpm (peak-peak) at 0.008 in. 0.015 in. gap resistance

gap

Special precautions Focused (available) light source Tooth spacing and thickness is Same as passive pickup. Protect the contacts

required to obtain clearances critical to smoothness of wave Minimum tooth size for any during vibration

greater than 0.051 cm (0.020 in.) shape. Two rings required to speed must be - 0. 102 cm against wear

between disc and detector. Slotted obtain directional information. 0. 040 in.)

metal disc to minimize capacity/
reflection

Size (detector), 2.54 L x 1.02 H x 0.76 wide 3.0 x 2.5 x 1.9(1.2 x 1.0 x 0.75 in.) 1.1 x 3.8 (7.16 dia x 1.5 long) Wiper configuration

cm (in.) (1.00 Lx 0.40 H x 0.30 wide) for each pickup for each pickup

Environment 0' to 100C space qualified by -400 to +900C. No problem sur- Same as passive pickup No temperature

survivability NASA viving aircraft engine or space- problem. Some

borne dynamic environments bounce may occur
during vibration.



TABLE C-13. COMPARISON OF DC BRUSH TYPE MOTOR SPACE APPLICATIONS

Vacuum Exposure Duration (Years)

Number

Ref of Units (1) (2) (3) (4)

Wet lubricated OSO I despin (space) 1 1

Apiezon "C" plus OSO II despin (space) 1 1
lead napthanate

OSO III despin (space) 1 1 - (0. Z)

OSO IV despin (space) 1 1

TACSAT I (space) 2 1 - (105)

TACSAT I life (lab) 3 1 - (54)

Hughes fixture drive (lab) 4 1

Dry lubricated OLSCA (test) 1

Boeing 046-45 FRUSA (space) 2

ATM (test) 1 -(26.2)

C) BBRC (silver) (test) (5-1) 6

BBRC (gold) (test) (5-2) 6

BBRC (copper) (R&D)(test) (5-3) 8

SPAR (R&D) (test) (6-2) 1

Fairchild (test) (6-4) 1 (Z4. 0)_

NASA (development test) (7-1) Several - (114.0)

NASA (for ATM) (test) (7-2) (26.0)

Surveyor

Skylab

Navy (classified) (space) Many

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Component revolutions (x 106)



Motor Brushes

Features of the motor design include redundant cartridge held brushes

employing constant force negator springs. Fully encapsulated motor windings

and laminations ensure electrical and mechanical integrity, and preclude

damage during handling. A high reliability of success can be predicted for

the dry lubricated brush design employed by the spacecraft motor or motors.

This material is relatively insensitive to speed and is not susceptible to time

and temperature dependent effects such as oil migration and evaporation, and

brush hydrodynamic planing, as are wet lubricated brushes. Table C-13

illustrates the dry lubricated compact space mission usage versus a wet brush

design.

Brush/Commutator Materials

1) Brushes - dry lubricated compact (Pure Carbon Co. #PM105)

molybdenum/tantalum/MOS2 (same as Boeing #046-45).

2) Commutator -

a) Material: pure copper (ETP/QQ-C-576)

b) Finish: 16 pin.

Main Bearing Assembly

The main bearing assembly consists of a beryllium shaft and housing

utilizing both integral and fitted labyrinth seals, a 15-5 PH CRES preload

spring, and two 440 C CEVM angular contact ball bearings. This portion of

the BAPTA provides the mechanical interface between spinning and despun

sections of the spacecraft. The spacecraft despun platform and antenna

support structure are mounted to the BAPTA shaft. The spacecraft rotor

support structure mates directly with the BAPTA outer housing forward

flange. The BAPTA is electrically isolated at both mounting interfaces

(10 K Q/min resistance) to preclude stray current passage through the

bearings. Additional protection is provided by grounding the spinning and

despun BAPTA structure via a slip ring such that a static charge cannot

build up to cause trickle current discharge through the bearings.

Bearings

The bearings selected are stainless steel angular contact bearings,

having a 40 mm bore. A nominal contact angle of 25 deg minimizes the

Hertzian stresses due to combined axial and radial loads imposed during

launch, apogee motor burn, and orbital operation. The ball and race

material is 440C consumable electrode vacuum melt (CEVM) stainless steel.

This material provides maximum corrosion stress resistance, and a mini-

mum of foreign particle inclusion, to maximize bearing fatigue life. The

race hardness is a minimum of 58 on the Rockwell C scale; the balls are 1

to 2 points harder. The bearings are manufactured to AFBMA ABEC-9 class
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TABLE C-14. SIGNIFICANT TEST AND APPLICATION EXPERIENCE

Satellite or Pressure, Temperature, Load, Number of Bearings

Lubricant Vacuum Test Torr °F Speed, rpm lb Duration, h and Size Remarks

Vac-Kote OSO 1 through V 10
- 8  

50 nominal 30 2 to 5 152,000 total 3308 - R18 Duty cycle; on 40 min,

(17,000 to off 20 min

42, 000 h)

:Vac-Kote Various ground 10
-8 

to 10
-8  

50 to 70 30 to 60 0.5 28, 600 total 2 at 1 in. outside OSO

vacuum test (4, 800 to 13,200 h diameter 1 - 3308
per test) 1 - Ri8 6 -

*Vac-Kote TACSAT 10
- 8  

75 60 150 25,000 2 each In orbit since February 1969;
still operating successfully
after 3. 5 years

*Vac-Kote Intelsat IV 10 8 Cycling 70 to 60 60 25, 900 total 2 per spacecraft All four spacecraft still

F-2 through F-5 100 (1,600 to 13,000 h) 3,543 bore operating successfully
in orbit

*Vac-Kote Intelsat IV 10
- 8  

Cycled 0 to 100 60 60 8,600 2 each, 3,543 bore Test concluded - successful

BAPTA vacuum (1 year operation)

life test

Hughes Lube Basic Bus Satellite 10 to 109 Cycled 5 to 110 60 150 16, 000 2 each of 2 sizes Test presently operating

C (HMS 20-1727) BAPTA vacuum (BAPTA and ECRA). (started November 1970)

life test 5, 905 and 1. 5 bore

N -8
Hughes Lube Telesat bearing 10 70 100 45 6,500 2 each, 2, 362 bore Test concluded - successful

(HMS 20-1727) vacuum life test

Hughes Lube Various short 10
- 8  

70 60 to 100 60 6, 500 in intervals 2 to 6 bearings per All tests successful

(HMS 20-1727) vacuum tests of 100 to 1,000 test 2, 362 bore
each test

Hughes Lube Vacuum test 10
- 8  

130 60, 120 10,20 5, 270 1 each Test concluded -

(HMS 20-1727) and 180 and 40 1.5 bore successful

Hughes Lube OSO bearing life x 10
-6  

76 6 60 1,500 2 each, 3, 543 bore Test presently operating

(HMS 20-1727) test 
successfully

*Vac-Kote is a lubricant that is in the same family as the Hughes HMS 20-1727 Aprezon C lead napthanate system.

Analysis cannot distinguish between Vac-Kote and the Hughes material.



tolerances and utilized grade 5 balls. One shoulder of the inner race is

machined away to allow disassembly without the use of force or differential

heating and cooling techniques. The retainer design is outer race riding,

and retains the balls with the outer race after removal of the inner race.

These nonstandard features greatly simplify BAPTA assembly.

Preload Spring

An axial load must be applied to the angular contact bearings to main-

tain ball-to-race alignment, to prevent ball skid, and achieve the required

bending stiffness during operation. Use of an axially soft preload spring in

conjunction with the angular contact bearings enables the assembly to absorb

large thermal gradients and temperature excursions without significant radial

differential expansion (such as cold outer race, hot inner race) the races

move axially, to change the contact angle and use up part of the bearing

diametral clearance. Longitudinal (axial) differential expansion is absorbed

directly by axial motion against the preload spring.

The axial load is provided in the BAPTA by a Hughes developed system

utilizing a single flexural preload spring on the aft bearing. This preload

system combines high radial stiffness with low axial stiffness, and avoids the

difficulties inherent in conventional wavy washer or helical coil spring con-

cepts installed against a slip fit sliding race. Radial looseness of the sliding

race in the conventional preload system can cause nutational instability and

contribute to spin axis wobble. The Hughes developed system also avoids the

possibility of sliding race wear, cocking, or subsequent jamming in the slip

fit diameter.

Lubrication

Selection of Lubricant

The oil selected for bearing lubrication is a mixture of 95 percent

Apiezon C low vapor pressure hydrocarbon oil and 5 percent lead nepthanate

extreme pressure additive. The oil is controlled by Hughes material speci-

fication HMS 20-1727. The special additive material contains approximately

31 percent lead. Consistent with Company policy for materials for space-

craft applications, the lubricant selection was made on the basis of significant

successful spacecraft applications and extensive research and testing accom-

plished at Hughes as detailed in Table C-14. Considerable research has been

conducted on the physical and chemical properties of the lubricant, and on oil

transfer mechanics from the retainer to the bearing parts. The lead nepthan-

ate surface film has been studied using the electron microscope and spectro-

graphic analysis.

Test and Flight History

Results of continuous testing for 7 months at pressures of 10
- 8 to 10 - 9

Torr on nine different groups of bearings operating at three speeds 
and three

preloads provided data indicating that HMS 20-1727 is an acceptable lubricant

for the BAPTA application. During vacuum testing, bearing and lubricant
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system performance was monitored with strain gage torque transducers,

thermocouples, and lubricant film measurement. There was no indication

of failure or impending failure during or after the test. At the conclusion

of the test, all bearings appeared well wetted with lubricant and in excellent

condition. Wear measurements by neutron activation analysis after the

test indicated average wear over the ball and race contacting surfaces of

2 to 5 millionths of an inch. This is on the order of the surface roughness

of the races.

In addition to the successful 7-month test at Hughes, a considerable

history of successful life test and spacecraft flight experience has been

accumulated on bearings lubricated with essentially the same material and

process (see Table C-14). The selected lubricant is presently being used

in the advanced satellite, Intelsat IV and Telesat spacecraft applications.

A vacuum life test of a complete flight quality BAPTA using

HMS 20-1727 lubrication is still operating successfully after having run

in the 10-9 to 10-10 Torr pressure range continuously for the past 28 months.

Bearing torque in this life test is running steadily at 0. 29 ft-lb with no

indication of degradation or impending failure of the bearings or lubricant.

A complete Intelsat IV BAPTA was also vacuum life tested for 1 year with

no degradation of bearings or lubricant performance. Both life test BAPTAs

were thermally cycled over the expected orbital temperature ranges.

Electrical Contact Ring Assembly (ECRA)

The purpose of the ECRA is to transfer electrical power and signals

between the spinning and despun sections of the orbiter. The ECRA shaft

is mounted on the BAPTA despun shaft, signal and power leads are embedded

in the core of the shaft material, and each one is connected to a separate

signal or power slip ring. Brushes, mounted on the BAPTA spinning hous-

ing, make contact with individual rings to complete the electrical circuits.

The leads coming from each ECRA section terminate in connectors for

attachment to the spinning and despun mating connectors.

Two separate power paths with a common return and two signal

circuits are provided by the ECRA. An electrical ground of the BAPTA

bearings is attained by means of a signal level slip ring transfer path to

ensure that residual voltage potential between spinning and despun sections

is minimized to preclude detrimental current flow through the bearings.

The ECRA is a dry lubricated system utilizing coin silver rings and

composite brush material of 85 percent silver, 12 percent MoS Z and

3 percent graphite. The dry lubricated slip ring technology employed in

the BAPTA is the result of extensive long term ground vacuum testing

conducted to support the development of power transfer assemblies for

previous programs. Design details of the ECRA were borrowed directly

from these programs as follows:
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1) Brush/ring material: TACSAT, Intelsat IV, and
advanced satellites

2) Signal brush design: Advanced satellites

The brushes have been designed for mechanical redundancy so that should
one brush on any ring fail to make contact, the ECRA current, noise and
voltage drop requirements are met. Shielding is provided on each signal
channel, and each circuit is insulated from adjacent circuits.

A summary of the ECRA design characteristics is shown in
Table C-15.

Summary of Dry Lubricated Tests

Extensive development testing of dry lubricated slip ring systems
has been conducted during recent years at Hughes, as summarized in
Table C-16. Over 25 different brush/ring material combinations have
been evaluated in long term vacuum tests, with brush wear, brush wear
rate, contact resistance, and electrical noise monitored during each test.
The best material candidates were tested further to determine the effect

on performance of the design variables of brush mount geometry, brush
force (pressure), spring rate, contact area, number of brushes per wear
track, contact angle, mold pressure orientation, current density, brush
and ring surface preparation techniques, and run-in procedures. In
addition, the effect on performance of ring surface speed variations was

analyzed to determine the validity of accelerated speed testing. Of these

parameters, the mechanical characteristic at the brush/ring interface, as

provided by the brush support geometry, contact geometry, brush spring

rate, and number of brushes per wear track have the strongest effect on

performance.

Hughes has recently determined that the vacuum pressure level in

the slip ring environment also has a strong effect on noise and wear
performance.

Lubrication Process

The brush material proposed is a sintered composite of 85 percent Ag,

3 percent Gr, and 12 percent MoS Z per Hughes Aircraft Company Specifi-

cation HMS 20-1652 (Stackpole. Carbon Company, Grade SM 476). The

brushes are fabricated by mixing powders of the various materials, press-

ing the mixture into a mold, and maintaining pressure while sintering at a

temperature near the melting point of silver. This fuses the silver

particles together to provide mechanical strength of the brush, while main-

taining a uniform distribution of the solid lubricant through the brush.

Pore size in the brush is controlled by the applied pressure and sintering

time. The resultant block of material is then cut and dry ground to the

proper dimensions, with a minimum of at least 0. 03 in. removed from any

as-molded surface per Hughes requirements. The resultant brush has a
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TABLE C-15. ECRA DESIGN CHARACTERISTICS

Brush material: 85% Ag, 3% Gr, 12% MoS 2 per
HMS 20-1652 (Stackpole Grade SM 476)

Ring material: Coin silver, full hard, temper 6, per
MIL-S-13282, 12 pin. rms surface
finish or better

Signal and power brushes:

Tip size 0. 060 x 0. 245 in 2

Contact area 0. 014 in 2 /25

Brush pressure 3.9 psi

Spring rate 196 gm/in

Steady state rating 1 A at 75 A/in 2 (per brush)

Impulse rating 3 A (per brush)

Available wear length 0. 125 in. to zero brush force

0.075 in. to 0. 10 brush force

Mount type Cantilever spring

grain pattern. With the direction of molding pressure oriented parallel to

the ring motion, the lubricant feed process and area coverage of the wear

track is optimized, because no straight-line wear path can be constructed

across the wear face in the direction of ring motion that does not intersect

several lubricant pockets.

As ring motion occurs, lubricant in the brush is fed directly to the

brush/ring interface and smeared onto the ring, such that a film of lubri-

cant is gradually burnished into the ring. Initially, when a clean metal

ring condition exists, the brush wear rate is high. As the lubricant film

develops the brush wear rate reduces, thereby reducing the rate of lubri-

cant supply to the ring. The lubrication process is thus self-regulating,

with the brush wear determined by the equilibrium between the rate of

removal of lubricant from the ring and the rate of resupply as the brush

wears. Wear performance of the proposed signal and power brush design

has been determined in many long term vacuum tests, and is heavily

dependent on the vacuum pressure environment near the brush/ring inter-

face. Wear lifetime calculations are based on >1 x 10-6 Torr internal ECRA

pressure, where the wear lifetime of the brushes is as follows:
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TABLE C-16. SLIP RING TEST SUMMARY - DRY LUBRICATED TESTS

Environment Rotation Ring Travel

Test Ring Material and Diameter, Duration, Pressure Rate, (107 in.), Revolu ions Brush

Ref. No. Fixture Number of Rings in, h Range, Torr rpm in. 0 ) Material Brush-Type Dimensions

Stepped fixture Coin silver (12 total, 1 3,000 5 x 10 200 - 10 36 SM476 Cartridge mount

Test A 3 each, 4 diameters, 2 to 2 - 20 M487 0. 187 x 0. 187 tip area;

0.25 A wide) 4. 75 o 10 4-3/4 - 47 BAC4-53-3 2 brushes/track,

. 210 -116 2.6 A/brush

2 Stepped fixture Coin silver (12 total, 1 ,426 9 x 10
7  

60 1 - 2. 5 8.7 SM476 Same as Test A, 40, 60, and

Test B 3 each, 4 diameters, 2 to 2 - 5.6 80 gran brush forces

0.25 A wide) 4.75 5 10 4-3/4 - 12.0
10 10 - 25.0

3 Stepped fixture Coin silver (12 total, I 1,056 2 x 10
- 9  

60 10 - 11.0 3. 8 SM476 Sa ome as Test B

Test C 3 each. 4 diameters, 2
0.25 A wide) 1.75

10

4 Geoetry fix- ZCoin silver 120 1 2160 8 6 60 2.4 7.8 SM476 TDRSS design: cartridge mount

Geometry fix Coin silver (0 , 160 x 100. 220 x 0. 220, I and 2 per

ture Phase total, 0 5 in. O 10
6  track, 3.6 A/brush. 40, 60,

80 gram force

Cantilever spring mount -
0.050 x 0. 145 up area, signal
brush, 50 mA/brush

Rocker arm mount - same tip

as cantilever spring

Material fixture Coin silver 1 2060 8x 10-6 60 2. 3 7.4 SM476 TDRSS design (cartridge mount

ateria Elec tr C o-depr 1 2,060ed to SM428 0. 220 x 0. 220) brushes track,

silver two types) I ted to 
6  

M487 3. 6 A/brush, 80 brushes

Copper t pSM492 total, 4 of each of 20 material

* Copper 
combinations

* Rhodium plate

(zO total, 0. 5 in.
wide)

SOLSCAiip ring Coin silosi 3 -500 10-6 1 0.03 0.03 SM476 Cartridge, power 0.680 x 0.220,
SM487 8.2 A/brush, cantilever spring,

Pure silver BAC-4-53-3 signal
ure silver BAC 046-45

eTACSAT life test Coin silver 12 power I, -2,800 Unknown 8  
550 12.0 38 SM476 Cantilever spring: Two types

(dre libe) sC pnee, ECRA i 0 Pawer: 0. 145 x 0. 220

(dry lbe) se p 1,000 Signal: 0. 045 x 0. 145

ca sinal 2 brushes/track
chamber Power: 2.5 A/brush

Signal: 50 mA/brush

8 Modified Electrodeposited 1 3,500 107 to 85 3.6 11 SM476 Same as life test unit above

TACSAT silver (same as 10
above unit)

9 Geonetry fix- Coin silver (20 1 7,220 t o 60 12.1 38.7 SM476 Same as Phase I

ture Phase II total 0. i 0 90

wide)

10 Signal brush Ein silver 03 1 7,22 0 l0 to 60 7.86 25.1 SM476 TDRSS design (cantilever

fixture total, 0. in. 10t 
spring 0.060 x 0.245) rocker

wide)fixture total .5 in. 
arm 0.060 x 0.245; Signal.2/

ide) track, 50 mA each

S Accelerated life Coin silver 1196 7 to 60 91.1 289.9 SM476 TDRSS design (cartridge
11 Accelerated life Coin silver180 SM428 x .220) and 2 per

test fixture electrodeposited O0 SM428 0.track, 20. A/brushnd pe

silver, (20 total, 300 M487 track, 2.5 A/brush

0. 5 in. wide) 600

12 Intelsat IV life Coin silver (4 total) 1 8,760 105 to 60 9.9 31.5 SM476 TDRSS design (cartridge,

teat - APT47 10 0.220 x 0. O220) 1 per track

ttCRA 10 . 5 A/brush
to 10 in
chamber

13 ,HS-318 BAPTA Coin silver J2 power 1-1/8 12,240 Unknown in 60 15.5 44.0 SM476 TDRSS design (cartridge,

life te s 20 sigal) ECRA o-
7  0. 220 x 0. 220) 1 per track,

life test 0 signal CRAto 10-9 in 3.6 A/brush (cantilever

to 10
- 

in spring, 0. 60 x 0.245)
chamber l per track, 50 mA/brush

Brush composition:

SM476 85 °/o Ag, 3 /o Gr, 12 °/ MoS

SM487 83.5 /o Ag, 2.5 /o Cu, 15 /oMS
SM428 85 0o Ag,15 /o MoS2
SM492 85 /o Ag, 1 / Nbe

BAC4-53-3 16. Ag, 12. 5N/ o  
o, 4 /o Ta, 67 °/o MoS 2

BAC046-45 Same as 4-53-3 except without Ag

STest still in operation.
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Conservative Worst Case
(>I x 10-6 Torr)

Wear in 7 years Total lifetime :

Signal and power
brushes 0. 046 in. 20. 67 yrs.

Based on available wear length of 0. 075 in.

for signal brushes.

Several design features have been incorporated in the 
Pioneer Venus

ECRA design to reduce internal pressure to a minimum, 
as follows:

1) All materials, coatings, insulation, etc., 
used in construction

will be carefully screened for selection of lowest outgassing

rate.

2) Elevated temperature vacuum curing will be applied to certain

component parts prior to installation in the assembly and to

the EGRA as a whole prior to final flight acceptance testing.

3) Venting paths are provided for each slip ring section (signal

section, positive power bus, and return bus). Wear debris

is prevented from leaving the ECRA by cavities along 
the

vent path which trap particles through centrifugal 
force, while

providing low resistance to gases in the molecular flow

pressure range.

4) Protective covers over the vents and dry nitrogen purging

during ground test and handling will prevent moisture, debris,

or other contamination from entering the ECRA.

NUTATION DAMPER DESIGN

Nutation damping for both probe and orbiter is provided by a passive

mercury tube nutation damper of the design type utilized on Syncom, ATS,

and Telesat. The nutation damper consists of a fiberglass tube partially

filled with mercury and mounted with its long axis parallel with the rotor

spin axis. The end caps of the tube are plastic, and are bonded to the tube

by an epoxy adhesive. The mercury to tube fraction-fill is determined by

optimization of damping performance over the required mission profile.

The damper design features are summarized in Table C-17 and illustrated

in Figure C-13.

The extensive design, analysis, test, and flight data correlation

completed to date on similar nutation damper designs for the Syncom,
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TABLE C-17. NUTATION DAMPER CHARACTERISTICS

Size

Tube inside diameter 1. 91 Cm (0. 75 in.)

Tube outside diameter 2.44 Cm (0. 96 in.)

Tube length 71. 12 Cm (28. 00 in.)

Fraction-fill 0.2

Damper radial location 101. 60 Cm (40. 00 in.)

Mass

Mercury weight 0. 55 kg (1. 22 lb)

Tube/cap, weight 0. 31 kg (0. 68 lb)

Total weight 0. 86 kg (1. 90 lb)

Performance

Refer to Figure 5-20, Section 5

Intelsat II, and ATS programs obviates the need for experimental verification

of the damper time constant. Qualification and flight acceptance environ-

mental testing is usually performed on the damper at unit level. The

inflight experience of this damper design type affords a high reliability
exceeding 0. 9999 for a 7-year mission.

MECHANISMS

Design Considerations

Four mechanism designs were considered as part of this baseline

configuration: 1) thermal louvers, 2) pyrotechnic devices for locking

bicone antenna and magnetometer boom, 3) deployment mechanism for

extending bicone antenna into the cruise mode configuration, and 4) magneto-

meter boom deployment mechanism. The detail rationale for the thermal

louver design is given in detail as part of the thermal control subsystem
report and it suffices to say that only the detail louver mechanism design

will be discussed herein. Tradeoff studies on the remaining three mech-

anisms will be discussed to the extent that the overall spacecraft design
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allowed the trades to be carried out; e. g., the bicone antenna deployment

mechanism was constrained to extend along the spacecraft spin axis for a

specified length and to be attached to the spacecraft main structural members.

Design Descriptions

Thermal Louvers

The louvers (Figure C-14) operate in an analogous fashion to venetian

blinds. When the blades are closed, they act as a radiation shield between

the heat source and the heat sink. When the blades are open, heat is dir-

ectly radiated to space from the high emittance interior surface of the

thermal controller. For blades with polished aluminum surfaces, the

apparent infrared emittance of a system of blades covering a high emittance

surface can be expected to be as low as 0.1 (closed position). When the

blades are in the vertical position (open) with respect to the mounting sur-

face, the apparent emittance is increased to 0. 7 or greater. Each controller

weighs a maximum of 0. 65 lb and covers an area 8 by 16 in.

The controllers maintain temperature within the given range by

effectively varying the emittance of the mounting surface with temperature.

Figure C-15 shows the typical performance over a wide range of dissipation.

Effective emittance of the controller is automatically regulated as a function

of average surface temperature under the thermal controller. The louver

blades begin to rotate as the mounting surface temperature increases to

approximately 60 0 F. As the louver blades rotate, they expose the high

emissivity surface of the equipment shelf to allow heat to dissipate from

the spacecraft. In the open position, the louvers are positioned to allow

approximately 128 in 2 of radiation surface areas to be exposed per controller.

Effective emittance in the open position permits approximately 27 W to be

radiated at 85 0 F from each controller. With the system closed, the highly

polished blade surfaces are exposed to space, presenting a low emittance

surface which allows approximately 4. 2 W to be radiated at 60 0 F for each

controller.

Rotation of the louver blades is performed by conversion of heat

energy into mechanical motion by use of a bimetallic actuator. The

bimetallic actuator is wound so that the strip of material with the greater

coefficient of expansion forms the outer surface of the spring. This con-

struction causes the actuator to contract or close when heated sufficiently

and expand or open when sufficiently cooled. The actuators are keyed to

their respective louver blade -so that the louver rotates with the actuator

movement. Each louver blade set (two blades) is individually actuated

with a bimetal element. An adjustment on the controller assembly permits

each actuator to be set so that the temperature at which the blade begins to

open can be fixed. The blades in this case shall begin to open at 55 + 2 0 F.

Heat is transferred to the actuators from the mounting surface by

radiation. The actuators are conductively isolated from the controller

structure so that louver blade position follows the mounting surface tem-

perature (equipment shelf temperature) due to this heat transfer mechanism.
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The thermal louvers design has been space qualified and flown on

Hughes built satellites.

Pin Pullers

The pin puller design selected has been used in many space applications

at Hughes with no failures. The dual pressure cartridge feature has been

added for the OSO-I program. All materials, with the exception of the A286

steel shaft, are aluminum. Both electrical and pyrotechnic redundancy is

provided with the use of two pyrotechnic pressure cartridges.

The single bridgewire Apollo standard intiator has been selected as

the pin puller pressure cartridge. This is a man-rated unit that was used

extensively on the Apollo program, and is being utilized as the basic pyro-

technic unit on the Skylab program.

Characteristics:

Weight 0. 14 lb

Power 5. O0 to 12. 0 A

per initiator

Bicone Antenna Deployment Mechanism

The bicone antenna mast assembly is stored in a tucked and locked

configuration during launch (Figure C-16 for two views). The deployment

sequence is initiated by actuation of a pyrotechnic pin puller.

The deployment mechanism consists of two tubes, one mounted inside

the other, two negator extension springs with drums and bearings, and a dual

cartridge pyrotechnic pin puller for releasing the stowed antenna after launch.

The outer or support tube is flanged at one end. It carries the two

constant force negator spring drums and bearing supports. The inner tube

is flanged at one end and attaches to the bicone antenna at the flange. The

extended ends of the negator springs are attached near the opposite end of

this tube. At the spring attach end is also located the bracket for engaging

the shaft of the explosive pin puller which is mounted to the other support

tube flange.

The inner tube is provided with a grooved guide engaging a guide rod

along the inside of the outer support tube. This guide rod prevents rotational

displacement of the antenna combination during deployment. A tapered collar

attached to the inner tube engages a tapered cylindrical insert near the deployed

position end of the outer tube to provide positive stopping (energy dissipation)

without rebound at deployment. A spring-loaded plunger provides a positive

locking and retention mechanism. The relative position of the collar and

insert are such as to maintains ubstantial overlap of the two tubes at the end

of deployment.
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Two coax cable canisters mounted to the outside tube contain the
cable in a large loop configuration during launch and provide a positive guide
during deployment.

Weight Summary

Mechanism 1. 0 lb

Mast 0. 8 lb

Coax guide 0. 151b

Total 1. 95 lb

Magnetometer Boom

The selected design utilizes a one-piece, rigid, pivoting titanium tube
of 1 in. outside diameter and approximately 0. 25 in. wall thickness. The
tube is cantilevered and rotates at two bearing pivot shaft mechanisms which
contain a cam-riding lock pin engaging a tapered slot at the deployed position.

The sensor end of the tube is restrained and supported by a pin puller latch
and bracket during the launch environment. Following deployment, the 10-g
retro firing force (orbiter) bending stress is safely limited to approximately

30, 000 psi. (An aluminum tube of I in. outside diameter and approximately
0. 062 in. wall thickness will also provide the necessary bending strength and

torsional stiffness, but with a weight increase for the tube alone of approxi-
mately 0. 25 lb. )

Since there is abundant centrifugal force developed for deployment,
the principal problem with this design is the absorption of the kinetic

energy generated as a result of the angular velocity obtained as the boom

pivots through an angle of approximately 130 deg. The available system
restraints, except for bearing friction torque, are the cam-riding lock pin,
fritction.torques, and the cable bending force as shown in Figure C-17.
These forces are to some extent environment related and cannot be relied

upon to provide predictable restraint. It is therefore proposed to incorporate
two spiral clock or motor springs into the mechanism at the pivot joint to
absorb most of the generated kinetic energy, which in unrestrained rotation
will.be approximately 50 ft-lb at 60 rpm. Because of variations in system
friction, these restraining springs will be adjustable in position so that enough

energy remains inthe boom assembly to assure positive locking at the end of

deployment. The nominal value of the restraining spring torque will be set,
as shown in Figure C-18, for the desired spin speed (+1 rpm) to allow the

unrestrained boom to overshoot a TBD number of degrees. This will insure

that the boom deploys to its full extended position, as shown in Figure C-19.
The remaining energy will then be absorbed by the tube and lock mechanism,

capable of safely absorbing approximately 120 in-lb of energy, thus assuring
positive locking.
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Weight

Sensor (tip mass) 1 lb

Boom 1. 6 lb

Mechanism assembly 1. 3 lb

Cable 0. 25 lb

Design Tradeoffs

Pyrotechnics

The magnetometer boom assembly and the bicone antenna mast

assembly will be stowed in a retracted and locked position during launch.

Release of these mechanisms for deployment will be accomplished by the

actuation of a pyrotechnic device. A number of pyrotechnic devices have

been qualified to accommodate these functions; they are separation bolts,

separation nuts, cable cutters and pin pullers.

The design of the mechanisms require that the pyrotechnic device be

either a rotational or linear movement restraining device rather than a

primary load-carrying member. Separation bolts and nuts are utilized in

areas that require structural load-carrying characteristics as well as load

release capability. Consequently, these devices are heavy and have more

complex mounting provisions. Cable cutters are not as heavy but have the

added problem of loose cables. Pin pullers provide simplicity of operation

as well as minimum weight and, therefore, have been selected as the most

suitable device for both deployment applications.

Magnetometer Deployment Mechanism (Thor/Delta Baseline)

The mission requires that a magnetometer sensor package weighing

approximately 1. 2 lb be placed outboard of the spinning spacecraft section

after launch. The deployed position of the sensor is 42 in. outboard of the

solar panel substrate with the sensor axis aligned relative to the spacecraft

axis to within 1 deg.

The relatively short extension required and the availability of storage

within the spacecraft contour obviate the necessity for telescoping, folding

or extensible type booms. However, these designs have been considered to

point up any obvious performance advantages peculiar to any of them.

Extensible type power-driven boom designs provide controlled deploy-

ment rates and preclude the need for snubbing or damping devices to limit

extension forces. However, this type of device requires power and control

elements for the motor. The inherent motor and control mechanism weight

peanlties are not in this case offset by the boom length storage capability

afforded by a rolled-up ribbon type configuration. Substitution of a centri-

fugal force actuated device still requires the mechanism (and weight) associated
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with the ribbon storage cassette and looses the advantage of the controlled

deployment rate. Either type of device requires a provision for cable stowage
prior to extension and a cable unreeling mechanism for extension. Except
for the bi-stem or zipper-type configuration, this type of device lacks

torsional stiffness.

A telescopic tube design involves overlapping joint and joint locking
design, will weigh more than a single tube, retains the cable stowage pro-
blem and in general offers no apparent performance advantages over the

selected design.

Articulated, inged joint extension devices relieve the cable deploy-
ment difficulties and provide greater boom length capabilities, however,
they do require pivot, energy dissipation and pivot locking designs at each

joint. The baseline design selected consists of a single rigid tube which is

rotated from the stowed and locked position inboard of the solar panel sub-

strate by the centrifugal force component about a single pivot axis.
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